• Title/Summary/Keyword: railroad bridges

Search Result 118, Processing Time 0.023 seconds

Evaluation of Performance Simulation for Bridge Substructure Due to Types of Scour (지반세굴 유형에 따른 교량 하부구조의 해석적 거동 예측)

  • Jung, Wooyoung;Yune, Chanyoung;Lee, Ilhwa
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.5-11
    • /
    • 2013
  • The primary objective of this research is to evaluate the behavior of a bridge substructure subjected to scouring during flood. A finite element (FE) study was carried out on a substructure modeled using the standard section specified for highway bridges. The three-dimensional FE model consists of non-linear springs with tri-axial load capacities at the base in order to consider the loss of bearing capacity of the substructure by local scour phenomenon. Various time varying loading conditions and scouring patterns were considered in the analysis. The results indicate a change in the structural behavior of substructure depending on the eroded area and pattern. The outcome of this research will be useful to suggest basic design guidelines for ground sills of the bridge substructure.

A Basic Experimental Study on Vibration Power Generator for A Green Traffic Network (녹색교통망을 위한 진동력 발전 기초 실험연구)

  • Jo, Byung-Wan;Lee, Yun-Sung;Kim, Young-Ji;Park, Jung-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.675-683
    • /
    • 2009
  • A Basic experimental study for the development of vibration-power generation system from the vibration energy of urban infrastructure, such as a railroad, highway, and bridges, was carried out to harvest electricity from moving vehicles. Starting with the proposal of vibration power generator which converts vibration energy to an electric power by using self-induction technology, the research explains the basic concept of self-induction technology and the dynamic characteristics of a ibration power generator. Also, in order to analyze the correlation of an electromotive force from vibration power generator which depends on external force and vibration speeds, many indoor experiments with various variables were achieved. Based on the experimental results, a vibration power generator system's ability were analyzed. With those results, basic data of vibration power generator system to acquire the maximum available power was confirmed.

Comparison of Construction Cost and External Stability of Railway Abutment wall with Friction Angle of Backfill Materials (뒷채움재의 내부마찰각 변화에 따른 철도교대의 안정성 및 공사비 비교)

  • Yoo, Chunghyun;Choi, Chanyong;Yang, Sangbeom;Park, Yonggul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.67-76
    • /
    • 2016
  • The railway bridge abutment subjected to the lateral earth pressure is a sensitive structure that is affected by backfill materials, installation methods, compaction, and drainage system and so on. The several design loads for the bridge abutment design consist of traffic loading on bridges and vertical & lateral force due to surcharge load at backfill. Especially, the lateral earth pressure of design load components is important and considered in the design of geotechnical engineering structure such as bridge abutment wall. The determination of cross section for abutment is finally determined with calculating external stability and member force of abutment wall structures. In this study, the abutment wall height is 12m and the optimal cross section of abutment wall has been determined that satisfies an external stability for abutment structure through friction angles of 35, 40, and 45 degrees of backfill materials. The external stability and member force of abutment wall with friction angle of backfill materials and were calculated and construction cost of each abutment wall structures was compared. It found that the construction cost was reduced from 2.2 to 8.4% with friction angle of backfill materials.

Failure Modes of RC Beams with High Strength Reinforcement (고강도 비틀림보강철근을 사용한 철근콘크리트 보의 파괴모드)

  • Yoon, Seok-Kwang;Lee, Su-Chan;Lee, Do-Hyeong;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 2014
  • To avoid abrupt torsional failure due to concrete crushing before yielding of torsional reinforcement and control the diagonal crack width, design codes specify the limitations on the yield strength of torsional reinforcement of RC members. In 2012, Korean Concrete Institute design code increased the allowable maximum yield strength of torsional reinforcement from 400 MPa to 500 MPa based on the analytical and experimental research results. Although there are many studies regarding the shear behavior of RC members with high strength stirrups, limited studies of the RC members regarding the yield strength of torsional reinforcement are available. In this study, twelve RC beams having different yield strength of torsional reinforcement and compressive strength of concrete were tested. The experimental test results indicated that the torsional failure modes of RC beams were influenced by the yield strength of torsional reinforcement and the compressive strength of concrete. The test beams with normal strength torsional reinforcement showed torsional tension failure, while the test beams with high strength torsional reinforcement greater than 480 MPa showed torsional compression failure. Therefore, additional analytical and experimental works on the RC members subjected to torsion, especially the beams with high strength torsional reinforcement, are needed to find an allowable maximum yield strength of torsional reinforcement.

Development of the Purlin Hanging System Form for the Girder Bridge Slab and Economic Analysis (거더교 상판 콘크리트 타설용 거푸집 개발 및 경제성 분석)

  • Lim, Jeeyoung;Kim, Sunkuk;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.271-278
    • /
    • 2016
  • In the case of South Korea, steel girder bridge (steel box or H-steel) and PSC (Pre-Stressed Concrete) girder bridge are the representative upper structures of railroad and road bridges. These structures account for 75% of the total bridge constructions and 80% of the total construction cost. Since the form work for concreting bridge slab is difficult, various construction methods developed and applied. However, several problems in those methods did not solve partially, including cost increase by material loss and rise of labor costs, quality deterioration by unskilled workers, increased construction time by complicated method, reduced productivity, safety accident by high place work, difficult transportation by big member, and rise of maintenance cost by material characteristic. Alternative method is needed to solve problems of as-is methods. Therefore, the purpose of this study is development of the purlin hanging system form for the girder bridge slab and its economic analysis. Through the findings of this study, it was verified that the purlin hanging system form is possible 60% reduction in cost and 80% reduction in time as comparison with conventional method.

Fatigue Capacity Evaluation of the Girder-Abutment Connection for the Steel-Concrete Composite Rigid-Frame Bridge Integrated with PS Bar (PS 강봉으로 일체화된 강합성 라멘교의 거더-교대 접합부에 대한 피로 성능 평가)

  • Ahn, Young-Soo;Oh, Min-Ho;Chung, Jee-Seung;Lee, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.249-258
    • /
    • 2012
  • Integral and rigid frame bridges have advantages in bridge maintenance and structural efficiency by eliminating expansion joints and bridge supports. However, the detail of typical girder-abutment connection is rather complex and increases construction cost depending on construction detail. For the purpose of compensating disadvantages such as complexity and additional cost, a new type of bridge is proposed in this study, which improves the efficiency of construction by simplifying the construction detail of girder-abutment connection. The proposed bridge has the connection detail of steel girder and abutment integrated by prestressed PS bar installed in the connection. In this study, finite element analysis and fatigue load test are conducted to evaluate the fatigue capacity of the proposed girder-abutment connection. The results of the finite element analysis revealed that the possibility of the fatigue damage in the girder-abutment connection is very low. The results of the fatigue load test verified that the integrity of the girder and abutment connection is maintained after 2,000,000 cycles of fatigue loading.

Extensional Buckling Analysis of Asymmetric Curved Beams Using DQM (미분구적법(DQM)을 사용한 비대칭 곡선 보의 신장 좌굴해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.594-600
    • /
    • 2021
  • Curved beam structures are generally used as components in structures such as railroad bridges and vehicles. The stability analysis of curved beams has been studied by a large number of researchers. Due to the complexities of structural components, it is difficult to obtain an analytical solution for any boundary conditions. In order to overcome these difficulties, the differential quadrature method (DQM) has been applied for a large number of cases. In this study, DQM was used to solve the complicated partial differential equations for buckling analysis of curved beams. The governing differential equation was deduced and solved for beams subjected to uniformly distributed radial loads. Critical loads were calculated with various opening angles, boundary conditions, and parameters. The results of the DQM were compared with exact solutions for available cases, and the DQM gave outstanding accuracy even when only a small number of grid points was used. Critical loads were also calculated for the in-plane inextensional buckling of the asymmetric curved beams, and two theories were compared. The study of a beam with extensibility of the arch axis shows that the effects on the critical loads are significant.

The Ecological Values of the Korean Demilitarized Zone(DMZ) and International Natural Protected Areas (비무장지대(DMZ)의 생태적 가치와 국제자연보호지역)

  • Cho, Do-soon
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.1
    • /
    • pp.272-287
    • /
    • 2019
  • The Korean Demilitarized Zone (DMZ) was established in 1953 by the Korean War Armistice Agreement. It extends from the estuary of the Imjin River, in the west, to the coast of the East Sea. It is 4 km in width and 148 km in length. However, the ecosystems of the civilian control zone (CCZ) located between the southern border of the DMZ and the civilian control line (CCL) and the CCZ in the estuary of the Han River and the Yellow Sea are similar to those in the DMZ, and, therefore, the ecosystems of the DMZ and the CCZ are collectively known as the "ecosystems of the DMZ and its vicinities." The flora in the DMZ and its vicinities is composed of 1,864 species, which accounts for about 42% of all the vascular plant species on the Korean Peninsula and its affiliated islands. Conducting a detailed survey on the vegetation, flora, and fauna in the DMZ is almost impossible due to the presence of landmines and limitations on the time allowed to be spent in the DMZ. However, to assess the environmental impact of the Munsan-Gaesong railroad reconstruction project, it was possible to undertake a limited vegetation survey within the DMZ in 2001. The vegetation in Jangdan-myeon, in Paju City within the DMZ, was very simple. It was mostly secondary forests dominated by oaks such as Quercus mongolica, Q. acutissima, and Q. variabilis. The other half of the DMZ in Jangdan-myeon was occupied by grassland composed of tall grasses such as Miscanthus sinensis, M. sacchariflorus, and Phragmites japonica. Contrary to the expectation that the DMZ may be covered with pristine mature forests due to more than 60 years of no human interference, the vegetation in the DMZ was composed of simple secondary forests and grasslands formed on former rice paddies and agricultural fields. At present, the only legal protection system planned for the DMZ is the Natural Environment Conservation Act, which ensures that the DMZ would be managed as a nature reserve for only two years following Korean reunification. Therefore, firstly, the DMZ should be designated as a site of domestic legally protected areas such as nature reserve (natural monument), scenic site, national park, etc. In addition, we need to try to designate the DMZ as a UNESCO Biosphere Reserve or as a World Heritage site, or as a Ramsar international wetland for international cooperation. For nomination as a world heritage site, we can emphasize the ecological and landscape value of the wetlands converted from the former rice paddies and the secondary forests maintained by frequent fires initiated by military activities. If the two Koreas unexpectedly reunite without any measures in place for the protection of nature in the DMZ, the conditions prior to the Korean War, such as rice paddies and villages, will return. In order to maintain the current condition of the ecosystems in the DMZ, we have to discuss and prepare for measures including the retention of mines and barbed-wire fences, the construction of roads and railroads in the form of tunnels or bridges, and the maintenance of the current fire regime in the DMZ.