• Title/Summary/Keyword: rag force

Search Result 5, Processing Time 0.016 seconds

A Development of the Rotary Arc Gap Switch for Pulsed High Current Transfer (펄스 대전류 Rotary Arc Gap 스위치 개발)

  • Cho, Chu-Hyun;Lee, Hong-Sik;Rim, Geun-Hie;Pavlov, E.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2239-2241
    • /
    • 1999
  • The most important question is how to use which kind of switch in pulsed power generation. There are many kinds of commercial closing switches, which have advantages and disadvantages. The most popular closing switch is the spark gap, but it has a disadvantage in life time, because of erosion of electrodes by arc heating. The Rotary Arc Gap (RAG) switch, especially Walkie-Edgar type RAG switch, was proposed to solve such problems in spark gap. It has a simple and special structure for arc moving caused from self-induced electromagnetic force, because moving arc makes less erosion on the electrodes. In this study we have made an Walkie-Edgar type RAG switch, tested the switching with capacitive energy storage system, and measured rotating arc speed in different peak current.

  • PDF

Estimation of the Tsunami Force Acting on Onshore Oil Storage Tanks and Houses (육상저유탱크 및 육상가옥에 작용하는 지진해일파력의 추정)

  • Lee, Kwang-Ho;Park, Bo-Bae;Kim, Chang-Hoon;Choi, Nack-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.369-382
    • /
    • 2011
  • This study investigated the tsunami force acting on onshore structures using a numerical program, three-dimensional one-field model for immiscible multi-phase flows, which is based on Navier-Stokes solver. In this paper, the characteristics of tsunami of oil storage tank and house structures studied to the distance between the seawall and structure. In addition, the study compared and analyzed the tsunami forces determined by considering drag force only and considering both drag and inertia forces. These numerical results were compared with the design standard. As a results, the case of considering the both forces is more close to numerical result than that of considering the drag force only.

Construction Stage Analysis of Cable-Stayed Bridges Using the Unstrained Element Length Method (무응력길이법을 이용한 사장교의 시공단계 해석)

  • Park, Se Woong;Jung, Myung Rag;Min, Dong Ju;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.991-998
    • /
    • 2016
  • The propose of this study is to demonstrate how efficiently and accurately the construction stages of cable-stayed bridges are analyzed using the unstrained length method (ULM) in which all unstrained element lengths are determined from a simplified analytical method (Jung et al., 2015). A forward analysis of cable-stayed bridges using the commercial FEA program, MIDAS is sequentially carried out considering the lack of fit force but the ULM is able to analyze a intermediate construction stage directly by taking the corresponding unstrained lengths of the construction stage model simply. The closing load step analysis is achieved by loading the pavement and counter weight forces in reverse. An Incheon bridge model is analyzed using the present ULM and the commercial program, respectively, and the two analysis results are compared.

Stability Analysis of Shear-Flexible and Semi-Rigid Plane Frames (전단변형효과를 고려한 부분강절 평면뼈대구조의 안정성 해석)

  • Min, Byoung Cheol;Min, Dong Ju;Jung, Myung Rag;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.9-18
    • /
    • 2011
  • Generally the connection of structural members is assumed as hinge, rigid and semi-rigid connections. The exact tangent stiffness matrix of a semi-rigid frame element is newly derived using the stability functions considering shear deformations. Also, linearized elastic- and geometric-stiffness matrices of shear deformable semi-rigid frame are newly proposed. For the exact stiffness matrix, an accurate displacement field is introduced by equilibrium equation for beam-column under the bending and the axial forces. Also, stability functions considering sway deformation and force-displacement relations with elastic rotational spring on ends are defined. In order to illustrate the accuracy of this study, various numerical examples are presented and compared with other researcher's results. Lastly, shear deformation and semi-rigid effects on buckling behaviors of structure are parametrically investigated.

Structural Strength Evaluation for Development of a Vertical Transfer Device for a Personal Rapid Transit (PRT) Vehicle (PRT 차량용 수직이송장치의 개발을 위한 구조강도 평가)

  • Kang, Seok-Won;Um, Ju-Hwan;Jeong, Rag-Gyo;Song, Joon-Hyun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.165-173
    • /
    • 2015
  • This paper presents numerical results of static structural stability analysis in development of a vertical transfer device of a PRT(Personal Rapid Transit) vehicle. The vertical transfer of a fully occupied vehicle operating on a road network is the first attempt, which is expected to contribute to overcome the limitations of conventional 2-dimensional operation mode. In particular, the vertical transfer apparatus designed based on vertical circulating conveyors is capable of continuous transfer without time delay so that it enables to accommodate a high traffic density. This system has been frequently used in a logistics field; however, it is essential to assess a structural integrity because an external force by a vehicle weight is exerted on the conveyors in the form of a concentrated load unlike a conventional logistic transport. In this study, prior to the production process, the structural performance of the pilot design in an early stage is numerically evaluated using the commercial finite element method (FEM) solver (i.e., $Ansys^{(R)}$).