• Title/Summary/Keyword: radon concentration

Search Result 187, Processing Time 0.027 seconds

Distribution of Radon Concentration at Subway Station in Seoul (서울시 지하철역사의 라돈농도분포 조사)

  • Lee Cheol-Min;Kim Yoon-Shin;Kim Jong-Cheol;Jeon Hyung-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.469-480
    • /
    • 2004
  • The radon concentrations were measured to survey distribution of radon concentrations in Seoul subway stations. The radon concentrations in air and water were measured at seventeen subway stations(Mapo, Chungjongno, Sodaemun, Kwanghwamun, Chongno3ga, Ulchiro4ga, Tangdaemun, Sangildong on Line 5;Nowon, Chunggye, Hagye, Kongnung, Taenung, Mokkol, Chunghwa, Sangbong, Myomok on Line 7) using the $RAdtrak^{TM}$ radon gas detector, Pylon AB-5 continuous passive radon detector and liquid scintillation counting method from January to May 1999. The major results obtained from this study were as follows: The long-term mean concentrations of radon were $61.8\;Bq/m^3$ in office, $78.9\;Bq/m^3$ in platform, $38.2\;Bq/m^3$ in concourse and $20.1\;Bq/m^3$ in outdoor, respectively. These levels were less than the action level ($148\;Bq/m^3$) of the U.S. EPA. The highest level of short-term mean concentrations was $116.55\;Bq/m^3$ at Chongno3ga station on the 5th line subway stations, while the lowest mean concentration was $19.55\;Bq/m^3$ at Mokkol station on the 7th line subway stations. The highest concentration of radon in the road water and storing underground water in the subway stations was $234.7\;KBq/m^3\;and\;155.5\;KBq/m^3$ in Sodaemun subway station, respectively. The results suggest that radon concentration in subway stations seems to be affected by ventilation and radon concentratin in underground water in the subway stations.

Seasonal Radon Concentration and Correlation Analysis of Indoor Radon Originated from Soil and Soil Radon at Detached House (계절적 라돈농도 변화 및 토양기원 실내라돈과 토양내 라돈농도의 상관성 분석 -단독주택 사례연구-)

  • Cho, Ju-Hyun;Kim, Younghee
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.105-111
    • /
    • 2017
  • In this study, the variation of indoor and soil radon concentrations were measured at a test bed (detached house), and correlation analysis was performed using linear regression. The results showed that the average concentration of indoor radon was increased by about 20% when the heater was operated in the house, but it was decreased by 15% when the ventilation system was on. In the changes of seasonal radon concentrations, soil and indoor radon concentrations in winter were higher than in summer. Statistical analysis showed a weak correlation between the soil radon and indoor radon, but the correlation (R=0.852, $R^2=0.726$) was relatively high at exhaust condition in the winter. It is difficult to extrapolate the results of the study to the general cases because radon distribution is highly site-specific, but the result of this study could be used as a reference for radon management and reduction of detached house in the future investigations.

Investigation of the relationship between earthquakes and indoor radon concentrations at a building in Gyeongju, Korea

  • Kim, Jae Wook;Joo, Han Young;Kim, Rinah;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.512-518
    • /
    • 2018
  • This article measured and analyzed the indoor radon concentrations at one university building in Gyeongju, Republic of Korea, to investigate if there is any relationship between earthquakes and indoor radon concentration. Since 12 September 2016, when two 5.1 and 5.8 magnitude earthquakes occurred, hundreds of aftershocks affected Gyeongju until January 2017. The measurements were made at the ground floor of the Energy Engineering Hall of Dongguk University in Gyeongju over a period between February 2016 and January 2017. The measurements were made with an RAD7 detector on the basis of the US Environmental Protection Agency measurement protocol. Each measurement was continuously made every 30 minutes over the measurement period every month. Among earthquakes with 2.0 or greater magnitude, the earthquakes whose occurrence timings fell into the measurement periods were screened for further analysis. We observed similar spike-like patterns between the indoor radon concentration distributions and earthquakes: a sudden increase in the peak indoor radon concentration 1-4 days before an earthquake, gradual decrease before the earthquake, and sudden drop on the day of the earthquake if the interval between successive earthquakes was moderately longer, for example, 3 days in this article.

Radon Concentration in Various Indoor Environment and Effective Dose by Inhabitants in Korea (국내 다양한 실내환경에서 라돈농도 및 거주자의 실효선량 평가)

  • Lee, Cheol-Min;Kim, Yoon-Shin;Roh, Young-Man;Kim, Ki-Youn;Jeon, Hyung-Jin;Kim, Jong-Cheol
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.264-275
    • /
    • 2007
  • The objective of this study was to offer basic and scientific data for decision-making of policy for improvement and management of radon, natural radiation gas, in Korea and to form the foundation of radon related international cooperation. Therefore, this study collected and re-analysed the articles on exposure of radon in various indoor environment in journals related environment in Korea since 1980 and estimated the annual exposure dose and effective dose by exposure of radon received by inhabitants in them. The highest pooled average radon concentration of $50.17{\pm}4.08\;Bq/m^3$ (95% CI : $42.17{\sim}58.17\;Bq/m^3$) was found in dwelling house among various indoor environment. All of pooled average radon concentration estimated in this study showed lower than the guideline concentration ($148\;Bq/m^3)$ of US EPA and the Korean Ministry of Environment. The annual effective dose received by inhabitants in various indoor environment was estimated 1.071 mSv/yr. That is equal to annual effective dose (1.0 mSv/yr) by exposure of radon estimated by UNSCEAR.

A Study on Mitigation Methods of Indoor Radon Concentration in Residential Buildings(I) - Test Cell Study (주거용 건축물의 실내 라돈농도 경감방안에 관한 연구(I) -Test Cell Study)

  • Cha, Dong-Won
    • KIEAE Journal
    • /
    • v.1 no.2
    • /
    • pp.21-28
    • /
    • 2001
  • Naturally-ocurring short-lived decay products of radon gas in indoor air are the dominant source of ionizing radiation exposure to the general public. It is written in BEIR VI Report(l999l the radon progeny were identified as the second cause of lung cancer next to cigarette or 10 % to 14 %(15,400 to 21,800 persons p.a.) of all lung cancer deaths in USA. Indoor radon concentrations in houses typically result from radon gaining access to houses mainly from the underlying soil. In the States, they have "Indoor Radon Abatement Act" which was converted from "Toxic Substance Control Act" in 1988 to establish the national long-term goal that indoor air should be as free of radon as the ambient air outside of buildings. To review and study techniques for controlling radon, two test cells were constructed for a series of tests and are under measuring indoor and soil gas (underneath of floor slab)radon concentrations according to EPA's measurement protocol. In this paper, important theoretical studies are previewed and the following paper will explain the test results and confirm the theories reviewed to find out suitable coefficients. On the basis of test analysis, it will be described and evaluated various techniques that can be used to mitigate elevated indoor concentration of radon including the control of radon and its decay products.

  • PDF

Radon concentration measurement at general house in Pusan area (부산지역 일반주택에서의 라돈농도측정)

  • Im, In-Cheol
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.29-33
    • /
    • 2004
  • Until early 1980s we have lived without thinking that radon ruins our health. But, scientists knew truth that radon radioactive danger is bedeviling on indoor that we live for a long time. Specially, interest about effect that get in danger and injury for Radon and human body is inactive in our country. Recently, with awareness for Radon contamination, We inform about importance and danger of Radon in some station of the Seoul subway, indoor air of school facilities and We had interest with measure and manages. Usually, Radon gas emitted in base of building enters into indoor through building floor split windage back among radon or indoor air of radon daughter nucleus contamination is increased. Therefore, indoor radon concentration rises as there are a lot of windages between number pipe of top and bottom and base that enter crack from estrangement of the done building floor, underground to indoor. Thus, Radon enters into indoor through architecture resources water as well as, kitchen natural gas for choice etc., but more than about 85% from earth's crust emit. Danger and injury of health by Radon and Radon daughter nucleus that is indicated for cause of lung cancer incerases content of uranium of soil rises specially from inside pit of High area and a mine, cave, hermetical space with house. Safe sub-officer of radon concentration can not know and danger always exists large or small during. So, Important thing reduces danger of lung cancer by lowering concentration of Radon within house and building. Therefore, is thought that need general house Radon concentration measurement, measured Radon concentration monthly using Sintillator radon monitor. Study finding appeared high all underground market 1 year than the ground, and the winter appeared high than the summer. Specially, month that pass over 4pCi in house that United States Environmental Protection Agency advises appeared in underground, and appeared and know Radon exposure gravity by 4 months during 12 months. Therefore, Thinking that establishment and regulation of norm and preparation of reduction countermeasure about Radon are pressing feels, and inform result that measure Radon concentration.

  • PDF

Indoor Radon Risk Assessment by Applying Measurement Concentrations and Exposure Times for Military Facilities and Underground Shopping Malls near Subway stations (군부대 시설 및 지하철 역사 주변 지하상가의 측정농도와 노출시간을 이용한 실내에서의 라돈 위해성 평가)

  • Kong, Jin Seok;Kim, Younghee
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.5
    • /
    • pp.345-351
    • /
    • 2016
  • Objectives: The objective of this study was to conduct risk assessment using indoor radon concentration and exposure times. Methods: The target facilities were military facilities before and after the application of radon reduction processes and underground commercial facilities in major subway stations in Seoul. Indoor radon concentrations were measured by passive sampler. Results: Radon concentrations in 13 military facilities were initially higher than the guidelines, but the levels were below guidelines after the application of radon reduction processes. Underground shopping mall radon concentrations near subway stations in Seoul satisfied the guidelines. However, indoor radon effective doses after radon reduction processes in some military facilities and those in underground shopping malls belonged to International Commission on Radiological Protection (ICRP) groups needing control management. Conclusion: Indoor radon management requires risk assessment data that takes into account working time (or residence time) in addition to management according to concentration guidelines.

Radon Exhalation from Five Wood Species

  • Lee, Ju Yong;Choi, Gyu Woong;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.735-747
    • /
    • 2018
  • Radon radiation exposures in home have been posed as a potential cancer hazard. This research aims to present the basic data of the indoor radon concentration level by examining the radon exhalation rates of wood species. Radon exhalation rates from five commonly used wood species in Korean wood building construction were measured with Continuous Radon Monitor (CRM), Model 1028 (Sun Nuclear Co., USA) using the Closed Chamber Method (CCM). The mass exhalation rate was observed to vary from $0.00089Bq{\cdot}kg^{-1}{\cdot}h^{-1}$ to $0.00181Bq{\cdot}kg^{-1}{\cdot}h^{-1}$, whereas the surface exhalation rate was observed to be $0.00677-0.01517Bq{\cdot}m^{-2}{\cdot}h^{-1}$. The radon exhalation rate of Quercus accutissima Carruth (white oak) which has the highest density showed the highest figure among the five wood species, on the other hand, the rest of four species showed similar results which were similar to the radon exhalation rates of wood in the U.S.A. and Canada. The average of the concentration measured by the CCM represented well up to the second half-life period (7.7 days). Because result of these small quantities seems to indicate that radon exhalation from the tested wood species has almost negligible impact, the main culprit of the high indoor radon concentration is clearly derived from the background of surrounding wood house. Therefore, as a safety precaution, infrastructures made of wood materials should be designed with the consideration of influx of radon and built accordingly. Furthermore, it is highly desirable that wood will be needed to use for furniture and interior finishing material in indoor environment.

The Research for Relationships between Concentration of Indoor Radon and Distribution of Soil Geological Map using GIS : Based on the Hwacheon and Jangsu Areas (지리정보시스템(GIS)을 이용한 토양지질도 분포와 실내라돈 상관성 연구 : 화천 및 장수의 사례를 근거로)

  • Kwon, Myunghee;Lee, Jaewon;Kim, Seongmi;Lee, Jungsub;Jung, Joonsig;Yoo, Juhee;Lee, Kyusun;Song, Suckhwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.333-351
    • /
    • 2017
  • Objectives: This study examines the relationships between indoor radon concentrations and distribution from soil geological mapping in the Hwacheon and Jangsu areas. Methods: GIS and a pivot table were used for inquiries about indoor radon contents, soil characteristics, and geological differences. Results: The Hwacheon area was characterized by the presence of normal and reverse faults as a passage of runoff for radon, sufficient occurrences of minerals containing uranium within granite as a radon source, a high concentration of radon within the granite area and clear differences of radon concentrations between granitic and metamorphic areas. The Jangsu area was characterized by the presence of normal faults, wide distributions of alluvium, and ambiguities on radon concentrations indoors among areas of geological differences. Considering the granite area and alluvium surrounded with granite areas, the characteristics of radon concentrations within soils and indoors in the Jangsu area are similar to those of the Hwacheon area. High concentrations are found with entisol and inceptisol in the Hawcheon area, but with entisol, inceptisol, and ultisol in the Jangsu area. High radon concentrations are found in sandy loam and/or loam. High concentrations are found in recently constructed or brick buildings, but low concentrations in traditional or prefabricated houses showing a high possibility of outward flow. Conclusions: The overall results suggest that radon concentrations in the Hwacheon and Jangsu area are dominantly influenced by geological characteristics with additional artificial influences.

A Study of Radon Concentration in First Floor and Basement and Prediction of Annual Exposure Rate in Korea (국내 실내 라돈농도와 연간 피폭선량 예측에 관한 연구)

  • Lee, Jong-Dae;Kim, Yoon-Shin;Son, Bu-Soon;Kim, Dae-Seon
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.311-317
    • /
    • 2006
  • The purpose of this study was to investigate Rn concentration and annual radiation exposure level in the basement and first floor. The Rn Cup monitors were placed in different environments such as shopping stage, office building, Apartment, Hospital, house in Seoul from Match 1996 to April 1997 and CR-39 films were collected every two months. The mean radon concentration in the basement of house($88.6\;Bq/m^3$) showed the highest level among the areas, while radon concentration on the first floor of house($50.5\;Bq/m^3$) showed the higher than other areas. The annual radiation exposure dose that person on the floor / in the basement of differential place in the seoul can be exposed during living was estimated from 24.11 to 87.64 mRem/yr. This radiation dose is significantly lower than 130mRem maximum radiation dosage from the radon nuclide prescribed by the ICRP, with respect to the overall average exposure of the working adult. this study indicated that possible radon sources on the first floor / in the basement areas are radon intrusion from soil gas, construction materials, or ground water leaking. Further study is needed to quantitatively assess major contributions of radon-222 and health effect to radon exposure.