• Title/Summary/Keyword: radius problem

Search Result 265, Processing Time 0.028 seconds

Strain gradient based static stability analysis of composite crystalline shell structures having porosities

  • Fenjan, Raad M.;Faleh, Nadhim M.;Ridha, Ahmed A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.631-642
    • /
    • 2020
  • This paper studies nonlinear stability behavior of a nanocrystalline silicon curved nanoshell considering strain gradient size-dependency. Nanocrystallines are composite materials with an interface phase and randomly distributed nano-size grains and pores. Imperfectness of the curved nanoshell has been defined based on an initial deflection. The formulation of nanocrystalline nanoshell has been established by thin shell theory and an analytical approach has been used in order to solve the buckling problem. For accurately describing the size effects related to nano-grains or nano-pores, their surface energies have been included. Nonlinear stability curves of the nanoshell are affected by the size of nano-grain, curvature radius and nano-pore volume fraction. It is found that increasing the nano-pore volume fraction results in lower buckling loads.

Critical thrust force and feed rate determination in drilling of GFRP laminate with backup plate

  • Heidary, Hossein;Mehrpouya, Mohammad A.;Saghafi, Hamed;Minak, Giangiacomo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.631-640
    • /
    • 2020
  • Using backup plate is one of the most commonly used methods to decrease drilling-induced delamination of composite laminates. It has been shown that, the size of the delamination zone is related to the vertical element of cutting force named as thrust force. Also, direct control of thrust force is not a routine task, because, it depends on both drilling parameters and mechanical properties of the composite laminate. In this research, critical feed rate and thrust force are predicted analytically for delamination initiation in drilling of composite laminates with backup plate. Three common theories, linear elastic fracture mechanics, classical laminated plate and mechanics of oblique cutting, are used to model the problem. Based on the proposed analytical model, the effect of drill radius, chisel edge size, and backup plate size on the critical thrust force and feed rate are investigated. Experimental tests were carried out to prove analytical model.

Propeller Skew Optimization Considering Varying Wake Field (선체반류를 고려한 프로펠러 최적 스큐화)

  • 문일성;김건도;유용완;류민철;이창섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.26-35
    • /
    • 2003
  • Propellers operating in a given nonuniform ship wake generate unsteady loads leading to undesirable stern vibration problems. The skew is known to be the most proper and effective geometric parameter to control or reduce the fluctuating forces on the shaft. This paper assumes the skew profile as either a quadratic or a cubic function of the radius and determines the coefficients of the polynomial function by applying the simplex method. The method uses the converted unconstrained algorithm to solve the constrained minimization problem of 6-component shaft excitation forces. The propeller excitation was computed either by applying the two-dimensional gust theory for quick estimation or by the fully three-dimensional unsteady lifting surface theory in time domain for an accurate solution. A sample result demonstrates that the shaft forces can be further reduced through optimization from the original design.

Trial Design of a Very Large Floating Airport (General Arrangement and Decision of Depth) (초대형 부유식 해상공항의 시설계 (일반배치와 깊이 결정))

  • 신현경;임춘규;정재희
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.45-49
    • /
    • 2001
  • The length and the breadth or a very large floating airport are determined by airplane types and airport facilities. However, the depth affect not only the structural strength but also the functional requirement such as a possibility of taking off and landing. The optimization problem for determining the depth is to select a design so that the cost is minimized. In this paper, a general arrangement and a method to decide the depth are proposed. Strength, functional requirement, and possibility of occurrence of deck wetness and slamming are considered in order to determine the depth of structure. Hydrodynamic forces of the diffraction and radiatin problems are predicted by applying the source-dipole distribution method, and the structural responses are obtained by the finite element method.

  • PDF

Optimum Design for Reducing Steering Error of Rack-and-Pinion Steering Linkage (랙-피니언 조향기구의 조향오차 최적설계)

  • 홍경진;최동훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.43-53
    • /
    • 1998
  • This paper addresses an optimization for reducing a steering error of a rack-and-pinion steering linkage with a MacPherson strut independent front suspension system. The length, orientations and inner joint positions of a tie-rod are selected as design variables and Ackerman geonetry, understeer effect, minimum turn radius, wheel alignment and packaging are considered as design constraints. Nonlinear kinematic analysis of the steering system is performed for calculating the values of cost and constraints, and Augmented Lagrange Multiplier(ALM) method is used for solving the constrained optinization problem. The optimization results show that the steering error are considerably reduced while satisfying all the constraints.

  • PDF

Central Crack in a Piezoelectric Disc

  • Kwon, Jong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1549-1558
    • /
    • 2004
  • This study is concerned with the general solution of the field intensity factors and energy release rate for a Griffith crack in a piezoelectric ceramic of finite radius under combined anti-plane mechanical and in-plane electrical loading. Both electrically continuous and impermeable crack surface conditions are considered. Employing Mellin transforms and Fourier series, the problem is reduced to dual integral forms. The solution to the resulting expressions is expressed in terms of Fredholm integral equation of the second kind. The solutions are provided to study the influence of the crack length, the crack surface boundary conditions on the intensity factors and the energy release rate.

Eigenvalue Analysis of Circular Mindlin Plates Using the Pseudospectral Method (의사스펙트럴법을 이용한 원형 Mindlin 평판의 동적특성 해석)

  • Lee, Jin-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1169-1177
    • /
    • 2002
  • A study of fee vibration of circular Mindlin plates is presented. The analysis is based on the pseudospctral method, which uses Chebyshev polynomials and Fourier series as basis functions. It Is demonstrated that rapid convergence and accuracy as well as the conceptual simplicity could be achieved when the pseudospectral method was apt)lied to the solution of eigenvalue problems. Numerical examples of circular Mindlin plates with clamped and simply supported boundary conditions are provided for various thickness-to-radius ratios.

A Study on the Fracture Phenomena in Optical Disks Due to Increase of the Rotating Speed (회전속도 증가에 의한 광디스크의 파괴현상에 관한 연구)

  • 조은형;좌성훈;정진태
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.437-442
    • /
    • 2001
  • In this study, the fracture phenomena of optical disks are discussed by theoretical and experimental approaches and then some recommendations are presented to prevent the fracture. Linear equations of motion are discretized by using the Galerkin approximation. From the discretized equations, the dynamic responses are computed by the generalized- time integration method. As a fracture criterion for optical disks, the critical crack length is presented. From experimental methods, the fracture procedure is analyzed. The fracture occurs when disks have crack on the inner radius of the disks. Since the crack growth and the fracture result from the stress concentration on the tip of the crack, a measure should be taken to overcome the stress concentration. This problem can be resolved by the structural modification of a disk. This study proposes 3 types of improved optical disks.

  • PDF

Development of Low-Noise Cooling Fan Using Uneven Fan Blade Spacing (비등간격 블레이드를 이용한 저소음 쿨링팬 개발)

  • Lee, Jeong-Han;Nam, Kyung-Ook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1109-1114
    • /
    • 2007
  • When unifying the functions of widely used two-fan, engine cooling system into a single unit, the noise and power issues must be addressed. The noise problem due to the increased fan radius is a serious matter especially as the cabin noise becomes quieter for sedans. Of the fan noise components, discrete noise at BPF's (Blade Passing Frequency) seriously degrades cabin sound quality. Unevenly spaced fan is developed to reduce the tones. The fan blades are spaced such that the center of mass is placed exactly on the fan axis to minimize fan vibration. The resulting fan noise is $3{\sim}11$ dBA quieter in discrete noise level than the even bladed fan.

  • PDF

Automatic Process Planning Design and Finite Element Method for The Multistage Cold Forged Parts (다단 냉간단조품의 자동공정설계시스템과 유한요소법)

  • 최재찬;김병민;이언호;김동진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.200-205
    • /
    • 1993
  • The automatic forming sequence design system can determine desirable operation sequences even if they have little experience in the design of cold forging process. This system is proposed,which generates forming sequence plans for the multistage cold forging of zxisymmetrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning processes. Forming sequence for the part can be determined by means of primitive geometries such as cylinder,cone, convex, and concave. By utilizing this geometrical characteristics(diameter,height, and radius),the product geometry is expressed by a list of the pnmitive geometries. Accordingly, the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. The preliminary choice of some feasible forming sequences can verify by using the finite element simulation.

  • PDF