• Title/Summary/Keyword: radiotherapy planning

Search Result 326, Processing Time 0.023 seconds

Landmarks in The Skull for Stereotactic Radiotherapy

  • Hiroki, Ohtani;Toraji, Irifune;Etsuo, Kunieda;Hidetoshi, Saitoh;Masahiro, Fukushi;Tsuguhisa, Katoh
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.144-145
    • /
    • 2002
  • Stereotactic radiotherapy is required to irradiate a small tumor accurately. The radiotherapy showing improves when making an accidental error little boundlessly. It is performed according to treatment planning that is established by the outside landmark of head. At present, when stereotactic radiotherapy for a head is done, the Leksell Flame is fixed on the head, and positioning based on the point and so on which it is in that fixed implement is performed. However, there are problems on the method done at present in the point such as reappearance when the fractionated irradiation method in which the Leksell Flame is removed and installed at every treatment is done because there are landmarks outside the head. Landmarks in the skull were decided, and that precision was examined for the purpose of the improvement of the radiation therapeutic gain. Linac-graphy with longitudinal and lateral view were taken with 6 MV photon beams. A distance to base point inside the skull, each film measured the angle from a center of the small irradiation field, and comparison was done. From the results, a large accidental error wasn't seen as a result of the measurement by every film. Stereotactic radiotherapy for a head treatment had an accidental error of about several millimeters when treatment positioning was done. Therefore, it was thought that there was no problem about an accidental error to arise by putting a landmark in the skull. And, because an accidental error was easy to discover, we thought that modification could be done easily. It was suggested that a landmark in the skull on thus study were useful for improvement of stereotactic radiotherapy.

  • PDF

Interobserver variation in target volume for salvage radiotherapy in recurrent prostate cancer patients after radical prostatectomy using CT versus combined CT and MRI: a multicenter study (KROG 13-11)

  • Lee, Eonju;Park, Won;Ahn, Sung Hwan;Cho, Jae Ho;Kim, Jin Hee;Cho, Kwan Ho;Choi, Young Min;Kim, Jae-Sung;Kim, Jin Ho;Jang, Hong-Seok;Kim, Young-Seok;Nam, Taek-Keun
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.11-16
    • /
    • 2018
  • Purpose: To investigate interobserver variation in target volume delineations for prostate cancer salvage radiotherapy using planning computed tomography (CT) versus combined planning CT and magnetic resonance imaging (MRI). Materials and Methods: Ten radiation oncologists independently delineated a target volume on the planning CT scans of five cases with different pathological status after radical prostatectomy. Two weeks later, this was repeated with the addition of planning MRI. The volumes obtained with CT only and combined CT and MRI were compared, and the effect of the addition of planning MRI on interobserver variability was assessed. Results: There were large differences in clinical target volume (CTV) delineated by each observer, regardless of the addition of planning MRI ($9.44-139.27cm^3$ in CT only and $7.77-122.83cm^3$ in CT plus MRI) and no significant differences in the mean and standard deviation of CTV. However, there were decreases in mean volume and standard deviation as a result of using the planning MRI. Conclusion: This study showed substantial interobserver variation in target volume delineation for salvage radiotherapy. The combination of planning MRI with CT tended to decrease the target volume and the variation.

Determining the Optimal Dose Prescription for the Planning Target Volume with Stereotactic Body Radiotherapy for Non-Small Cell Lung Cancer Patients

  • Liu, Xi-Jun;Lin, Xiu-Tong;Yin, Yong;Chen, Jin-Hu;Xing, Li-Gang;Yu, Jin-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2573-2577
    • /
    • 2016
  • Objective: The aim of this study was to determine a method of dose prescription that minimizes normal tissue irradiation outside the planning target volume (PTV) during stereotactic body radiotherapy (SBRT) for patients with non-small cell lung cancer. Methods: Previous research and patients with typical T1 lung tumors with peripheral lesions in the lung were selected for analysis. A PTV and several organs at risk (OARs) were constructed for the dose calculated; six treatment plans employing intensity modulated radiotherapy (IMRT) were produced, in which the dose was prescribed to encompass the PTV, with the prescription isodose level (PIL) set at 50, 60, 70, 80, 90 or 95% of the isocenter dose. Additionally, four OARs around the PTV were constructed to evaluate the dose received in adjacent tissues. Results: The use of higher PILs for SBRT resulted in improved sparing of OARs, with the exception of the volume of lung treated with a lower dose. Conclusions: The use of lower PILs is likely to create significant inhomogeneity of the dose delivered to the target, which may be beneficial for the control of tumors with poor conformity indices.

Radiotherapy for gastric mucosa-associated lymphoid tissue lymphoma: dosimetric comparison and risk assessment of solid secondary cancer

  • Bae, Sun Hyun;Kim, Dong Wook;Kim, Mi-Sook;Shin, Myung-Hee;Park, Hee Chul;Lim, Do Hoon
    • Radiation Oncology Journal
    • /
    • v.35 no.1
    • /
    • pp.78-89
    • /
    • 2017
  • Purpose: To determine the optimal radiotherapy technique for gastric mucosa-associated lymphoid tissue lymphoma (MALToma), we compared the dosimetric parameters and the risk of solid secondary cancer from scattered doses among anterior-posterior/ posterior-anterior parallel-opposed fields (AP/PA), anterior, posterior, right, and left lateral fields (4_field), 3-dimensional conformal radiotherapy (3D-CRT) using noncoplanar beams, and intensity-modulated radiotherapy composed of 7 coplanar beams (IMRT_co) and 7 coplanar and noncoplanar beams (IMRT_non). Materials and Methods: We retrospectively generated 5 planning techniques for 5 patients with gastric MALToma. Homogeneity index (HI), conformity index (CI), and mean doses of the kidney and liver were calculated from the dose-volume histograms. Applied the Biological Effects of Ionizing Radiation VII report to scattered doses, the lifetime attributable risk (LAR) was calculated to estimate the risk of solid secondary cancer. Results: The best value of CI was obtained with IMRT, although the HI varied among patients. The mean kidney dose was the highest with AP/PA, followed by 4_field, 3D-CRT, IMRT_co, and IMRT_non. On the other hand, the mean liver dose was the highest with 4_field and the lowest with AP/PA. Compared with 4_field, the LAR for 3D-CRT decreased except the lungs, and the LAR for IMRT_co and IMRT_non increased except the lungs. However, the absolute differences were much lower than <1%. Conclusion: Tailored RT techniques seem to be beneficial because it could achieve adjacent organ sparing with very small and clinically irrelevant increase of secondary solid cancer risk compared to the conventional techniques.

Impact of 0.35 T Magnetic Field on Dose Calculation for Non-small Cell Lung Cancer Stereotactic Radiotherapy Plans

  • Jaeman Son;Sung Young Lee;Chang Heon Choi;Jong Min Park;Jung-in Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.117-123
    • /
    • 2023
  • Background: We investigated the impact of 0.35 T magnetic field on dose calculation for non-small cell lung cancer (NSCLC) stereotactic ablative radiotherapy (SABR) in the ViewRay system (ViewRay Inc.), which features a simultaneous use of magnetic resonance imaging (MRI) to guide radiotherapy for an improved targeting of tumors. Materials and Methods: Here, we present a comprehensive analysis of the effects induced by the 0.35 T magnetic field on various characteristics of SABR plans including the plan qualities and dose calculation for the planning target volume, organs at risk, and outer/inner shells. Therefore, two SABR plans were set up, one with a 0.35 T magnetic field applied during radiotherapy and another in the absence of the field. The dosimetric parameters were calculated in both cases, and the plan quality indices were evaluated using a Monte Carlo algorithm based on a treatment planning system. Results and Discussion: Our findings showed no significant impact on dose calculation under the 0.35 T magnetic field for all analyzed parameters. Nonetheless, a significant enhancement in the dose was calculated on the skin surrounding the tumor when the 0.35 T magnetic field was applied during the radiotherapy. This was attributed to the electron return effect, which results from the deviation of the electrons ejected from tissues upon radiation due to Lorentz forces. These returned electrons re-enter the tissues, causing a local dose increase in the calculated dose. Conclusion: The present study highlights the impact of the 0.35 T magnetic field used for MRI in the ViewRay system for NSCLC SABR treatment, especially on the skin surrounding the tumors.

Multi-Institutional Database System for The Aid of Improvement in Radiotherapy Results

  • Ishibashi, Masatoshi;Harauchi, Hajime;Kou, Hiroko;Kumazaki, Yu;Shimizu, Keiji;Harano, Masako;Numasaki, Hodaka;Yoshioka, Munenori;Inamura, Kiyonari
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.126-128
    • /
    • 2002
  • A learning system was built into an on-line, multi-institutional radiotherapy database, where the treatment history records and the results in each institution were integrated, each radiotherapy planning was supported, and it led to the improvement in treatment results.

  • PDF

30 Years of Radiotherapy Service in Southern Thailand: Workload vs Resources

  • Phungrassami, Temsak;Funsian, Amporn;Sriplung, Hutcha
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7743-7748
    • /
    • 2013
  • Background: To study the pattern of patient load, personnel and equipment resources from 30-years experience in Southern Thailand. Materials and Methods: This retrospective study collected secondary data from the Division of Therapeutic Radiology and Oncology and the Songklanagarind Hospital Tumor Registry database, Faculty of Medicine, Prince of Songkla University, during the period of 1982-2012. Results: The number of new patients who had radiation treatment gradually increased from 121 in 1982 to 2,178 in 2011. Shortages of all kinds of personnel were demonstrated as compared to the recommendations, especially in radiotherapy technicians. In 2011, Southern Thailand, with two radiotherapy centers, had 0.44 megavoltage radiotherapy machines (cobalt or linear accelerator) per million of population. This number is suboptimal, but could be managed cost-effectively by prolonging machine operating times during personnel shortages. Conclusions: This study identified a discrepancy between workload and resources in one medical school radiotherapy center in Southern Thailand. This information is crucial for future strategic planning both regionally and nationally.

Impact of Adaptive Radiotherapy on Locally Advanced Head and Neck Cancer - A Dosimetric and Volumetric Study

  • Dewan, Abhinav;Sharma, SK;Dewan, AK.;Srivastava, Himanshu;Rawat, Sheh;Kakria, Anjali;Mishra, Maninder;Suresh, T;Mehrotra, Krati
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.985-992
    • /
    • 2016
  • Objective of the study is to evaluate volumetric and dosimetric alterations taking place during radiotherapy for locally advanced head and neck cancer (LAHNC) and to assess benefit of replanning in them. Materials and Methods: Thirty patients with LAHNC fulfilling the inclusion and exclusion criteria were enrolled in a prospective study. Planning scans were acquired both pre-treatment and after 20 fractions (mid-course) of radiotherapy. Single plan (OPLAN) based on initial CT scan was generated and executed for entire treatment course. Beam configuration of OPLAN was applied to anatomy of interim scan and a hybrid plan (HPLAN30) was generated. Adaptive replanning (RPLAN30) for remaining fractions was done and dose distribution with and without replanning compared for remaining fractions. Results: Substantial shrinkage of target volume (TV) and parotids after 4 weeks of radiotherapy was reported (p<0.05). No significant difference between planned and delivered doses was seen for remaining fractions. Hybrid plans showed increase in delivered dose to spinal cord and parotids for remaining fractions. Interim replanning improved homogeneity of treatment plan and significantly reduced doses to cord (Dmax, D2% and D1%) and ipsilateral parotid (D33%, D50% and D66%) (p<0.05). Conclusions: Use of one or two mid-treatment CT scans and replanning provides greater normal tissue sparing along with improved TV coverage.

Role of PET/CT in Treatment Planning for Head and Neck Cancer Patients Undergoing Definitive Radiotherapy

  • Arslan, Sonay;Abakay, Candan Demiroz;Sen, Feyza;Altay, Ali;Akpinar, Tayyar;Ekinci, Ahmet Siyar;Esbah, Onur;Uslu, Nuri;Kekilli, Kezban Esra;Ozkan, Lutfi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10899-10903
    • /
    • 2015
  • Background: In this study, we aimed to investigate the benefits of 18F-deoxyglucose positron emission tomography/computed tomography (FGD-PET/CT) imaging for staging and radiotherapy planning in patients with head and neck cancer undergoing definitive radiotherapy. Materials and Methods: Thirty-seven head and neck cancer patients who had undergone definitive radiotherapy and PET/CT at the Uludag University Medical Faculty Department of Radiation Oncology were investigated in order to determine the role of PET/CT in staging and radiotherapy planning. Results: The median age of this patient group of 32 males and 5 females was 57 years (13-84years). The stage remained the same in 18 cases, decreased in 5 cases and increased in 14 cases with PET/CT imaging. Total gross tumor volume (GTV) determined by CT (GTVCT-Total) was increased in 32 cases (86.5%) when compared to total GTV determined by PET/CT (GTVPET/CT-Total). The GTV of the primary tumor determined by PET/CT (GTVPET/CT) was larger in 3 cases and smaller in 34 cases compared to that determined by CT (GTVCT). The GTV of lymph nodes determined by PET/CT (GTVLNPET/CT) was larger in 20 cases (54%) and smaller in 12 cases (32.5%) when compared to GTV values determined by CT (GTVLNCT). No pathological lymph nodes were observed in the remaining five cases with both CT and PET/CT. Conclusions: We can conclude that PET/CT can significantly affect both pretreatment staging and assessed target tumor volume in patients with head and neck cancer. We therefore recommend examining such cases with PEC/CT before treatment.

Comparison of plan dosimetry on multi-targeted lung radiotherapy: A phantom-based computational study using IMRT and VMAT

  • Khan, Muhammad Isa;Rehman, Jalil ur;Afzal, Muhammad;Chow, James C.L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3816-3823
    • /
    • 2022
  • This work analyzed the dosimetric difference between the intensity modulated radiotherapy (IMRT), partial/single/double-arc volumetric modulated arc therapy (PA/SA/DA-VMAT) techniques in treatment planning for treating more than one target of lung cancer at different isocenters. IMRT and VMAT plans at different isocenters were created systematically using a Harold heterogeneous lung phantom. The conformity index (CI), homogeneity index (HI), gradient index (GI), dose-volume histogram and mean and maximum dose of the PTV were calculated and analyzed. Furthermore, the dose-volume histogram and mean and maximum doses of the OARs such as right lung, contralateral lung and non GTV were determined from the plans. The IMRT plans showed the superior target dose coverage, higher mean and maximum values than other VMAT techniques. PA-VMAT technique shows more lung sparing and DA-VMAT increases the V5/10/20 values of contralateral lung than other VMAT and IMRT techniques. The IMRT technique achieves highly conformal dose distribution to the target than other VMAT techniques. Comparing to the IMRT plans, the higher V5/10/20 and mean lung dose were observed in the contralateral lung in the DA-VMAT.