Contrasts in the style of the gold-silver mineralization in geologic and tectonic settings in Korea, together with radiometric age data, reflect the genetically different nature of hydrothermal activities, coinciding with the emplacement age and depth of Mesozoic magmatic activities. It represents a clear distinction between the plutonic settings of the Jurassic Daebo orogeny and the subvolcanic environments of the Cretaceous Bulgugsa igneous activities. Dunng the Daebo igneous activities (c.a. 200~150 (\ulcorner) Ma) coincident with orogenic time, gold mineralization took place between c.a. 195 and 135 (127 \ulcorner) Ma. The Jurassic Au deposits commonly show several characteristics; prominent association with pegmatites, low Ag/Au ratios In the ore-concentrating parts, massive vein morphology and a distinctively simple mineralogy including Fe-rich sphalerite, galena, chalcopyrite, arsenopyrite, Au-rich electrum, pyrrhotite and/or pyrite. During the Bulgugsa igneous activities (110~50 Ma), the precious-metal deposits are generally characterized by such features as complex vein morphology, medium to high Ag/Au ratios in the ore concentrates, and diversity of ore minerals including base-metal sulfides, pyrite, arsenopyrite, Ag-rich eletrum and native silver with Ag sulfides, Ag-Sb-As sulfosalts and he tellurides. Vein morphology, mineralogical, fluid inclusion and stable isotope results indicate the diverse genetic natures of hydrothermal systems in Korea. The Jurassic Au-dominant deposits (orogenic type) were formed at the relatively high temperature (about 300$^{\circ}$ to 45$0^{\circ}C$) and deep-crustal level (4.0$\pm$1.5 kb) from the hydrothermal fluids containing more amounts of magmatic waters ($\delta$$^{18}$$O_{H2O}$; 5~10$\textperthousand$). It can be explained by the dominant ore-depositing mechanisms as $CO_2$ boiling and sulfidation, suggestive of hypo- to mesothermal environments. In contrast, the Cretaceous Au-dominant (l13~68 Ma), Au-Ag (108~47 Ma) and AE-dominant (103~45 Ma) deposits, which correspond to volcanic-plutonic-related type, occurred at relatively low temperature (about 200$^{\circ}$ to 35$0^{\circ}C$) and shallow-crustal level (1.0$\pm$0.5 kb) from the ore-forming fluids containing more amounts of less-evolved meteonc waters ($\delta$$^{18}$$O_{H2O}$;-10~5$\textperthousand$). These characteristics of the Cretaceous precious-metal deposits can be attributed to the complekities in the ore-precipitating mechanisms (mixing, boiling, cooling), suggestive of epi- to mesothermal environments. Therefore, the differences of the emplacement depth between the Daebo and the Bulgugsa igneous activities directly influence the unique temporal and spatial association of the deposit styles.les.
The Cretaceous Imog granite is a calc·alkaline, subsolvus monzogranite and shows characteristics of "I-type" and "magnetite·series" granite by mineralogy and chemical composition. Many of the major and trace element characteristic of the Imog granite are consistent with a relationship by fractional crystallization of a basic magma. The primary magma of the granite derived from the subduction of oceanic crust at the destructive plate margin. The granite shows light REE enrichment with (Ce/Yb)N ratios of 7.77~12.55. All the REE patterns show Eu negative anomalies ($Eu/Eu^*=0.69$) in the pluton. The Imog granite at the southwestern part of the Hambaeg basin may be intruded along the tectonic intersections of the E-W and N-S lines such as deep faults and fractures. Radiometric age determination on the granite reveals as $96.7{\pm}2.0Ma$ by K-Ar dating on biotite.
The Tertiary $Ch{\check{o}}ngja$ basin is located in the southeastern coastal area of the Korean Peninsula. It is a lozenge shaped fault-bounded basin with circa $5{\times}5km$ areal extent, isolated from other Tertiary basins by the Cretaceous Ulsan Formation in-between. The northwestern boundary of the basin is a domino/listric type normal fault trending $N30^{\circ}E$, whereas its southwestern boundary is a dextral strike-slip fault (trending $N20^{\circ}W$) with a lateral offset of more than 1 km. The basin is bounded by the East Sea on the eastern margin. Basin-fills consist of extrusive volcanic rock (Tangsa Andesites) of Early Miocene (16~22 Ma in radiometric age), unconsolidated fluviatile conglomerate (Kangdong Formation) and shallow brackish-water sandstone ($Sinhy{\check{o}}n$ Formation). The latter yields abundant Vicarya-Anadara molluscan fossils of early Middle Miocene age. The Tertiary strata become younger toward the northwestern boundary-fault of the basin, showing a zonal distribution pattern parallel to the fault: the younger sedimentary formations occupy a narrow zone of 2 km width along the northwestern boundary-fault, whereas the older Tangsa Andesites underlie them unconformably in the eastern and southeastern portions of the basin. The strata in the basin, including the Tangsa Andesites, are tilted (about $20^{\circ}$) toward the northwestern boundary-fault Sedimentary strata thicken toward the boundary-fault, forming a wedge shaped half-graben structure. A number of small-scale syndepositional normal growth faults and graben structures are observed in the sedimentary strata. These extensional structures have the same trend as the normal northwestern boundary-fault which we interpret as a pull-apart detachment fault. These characteristics imply persistent extension during the basin evolution, caused by a NW-SE directed tensional force. The $Ch{\check{o}}ngja$ basin is, thus, a kind of syndepositional tectonic basin evolved in a strike-slip (pull-apart) regime. The latter was caused by a dextral simple shear associated with the NNW-SSE opening of the East Sea. In view of the fact that the normal growth faults do not cut through the uppermost portion of the youngest $Sinhy{\check{o}}n$ Formation, it is inferred that the tensional force came to be inactive in the early Middle Miocene. This is coincident in timing with the termination of the East Sea opening (15 Ma).
Journal of Korean Society for Geospatial Information Science
/
v.24
no.1
/
pp.61-68
/
2016
Digital aerial images have been commonly used in a large scale map production owing to their excellent geometry, and high spatial and radiometric resolution in recent years. However, a quality verification process for acquired images should be preceded in order to secure the high precision and reliability of produced results. Several experimental studies to verify digital imaging systems have been vigorously researched by constructing permanent test field in abroad. On the other hand, it is urgently necessary to suggest a practical scheme for an image quality verification, because this related study and experiment are still in its early stage at home. Hence, this study aims to present an easy method to measure the spatial resolution of the image in a visual way using a portable Siemens star. The images used in the study were obtained with three different cameras, two frame array sensors of DMC, UltraCamXp and a linear array sensor of ADS80. The Siemens star target appeared in every image is extracted and then the spatial resolution of image is compared with theoretical GSD(Ground Sample Distance) by a visual method. In addition, the change of spatial resolution depending on the location of the Siemens star from image center and flight direction and cross-flight direction is also compared and analyzed. As study results, while the theoretical GSDs of images taken with each camera are about 6~9cm, the visual resolutions are 1.2~1.3 times as great as the theoretical ones.
The Geostationary Ocean Color Imager (GOCI) data-processing system (GDPS), which is a software system for satellite data processing and analysis of the first geostationary ocean color observation satellite, has been developed concurrently with the development of th satellite. The GDPS has functions to generate level 2 and 3 oceanographic analytical data, from level 1B data that comprise the total radiance information, by programming a specialized atmospheric algorithm and oceanic analytical algorithms to the software module. The GDPS will be a multiversion system not only as a standard Korea Ocean Satellite Center(KOSC) operational system, but also as a basic GOCI data-processing system for researchers and other users. Additionally, the GDPS will be used to make the GOCI images available for distribution by satellite network, to calculate the lookup table for radiometric calibration coefficients, to divide/mosaic several region images, to analyze time-series satellite data. the developed GDPS system has satisfied the user requirement to complete data production within 30 minutes. This system is expected to be able to be an excellent tool for monitoring both long-term and short-term changes of ocean environmental characteristics.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.39
no.6
/
pp.563-569
/
2021
With the launch of Compact Advanced Satellite 500 series of various characteristics and the operation of KOMPSAT-3/3A, uses of high-resolution satellite images have been continuously increased. Especially, in order to provide satellite images in the form of ARD (Analysis Ready Data), various pre-processing such as geometric correction and radiometric correction have been developed. For pre-processing of high spatial satellite imagery, auxiliary information, such as solar zenith, solar azimuth and offnadir angle, should be required. However, most of the high-resolution satellite images provide the solar zenith and nadir angle for the entire image as a single variable. In this paper, the solar zenith and offnadir angle corresponding to each pixel of the image were calculated using RFM (Rational Function Model) and auxiliary information of the image, and the quality of extracted information were evaluated. In particular, for the utilization of pixel-based solar zenith and offnadir angle, pixel-based auxiliary data were applied in calculating the top of atmospheric reflectance, and comparative evaluation with a single constant-based top of atmospheric reflectance was performed. In the experiments using various satellite imagery, the pixel-based solar zenith and offnadir angle information showed a similar tendency to the auxiliary information of satellite sensor, and it was confirmed that the distortion was reduced in the calculated reflectance in the top of atmospheric reflectance.
Two distinct precious-metal mineralizations actively occur at central and southeastern Korea which display consistent relationships among geologic, geochemical and genetic environments. A large number of preciousmetal vein deposits in the central Korea occur in or near Mesozoic granite batholiths elongated in a NE-SW direction. Whereas, gold and/or silver deposits in the southeastern Korea occur within Cretaceous volcanic and sedimentary rocks. However, most of the precious-metal deposits in the southeastern Korea show characteristics of the silver-rich deposits than the gold-rich deposits in the central Korea. Two epochs of main igneous activities are recognized: a) Jurassic Daebo igneous activity between 121 and 183 Ma, and b) Cretaceous Bulgugsa igneous activity between 60 and 110 Ma. Precious-metal mineralization took place between 158 and 71 Ma, coinciding with portions of the two magmatic activities. Contrasts in the style of mineralization, together with radiometric age data and differences in geologic settings reflect the genetically variable natures of hydrothermal activities from middle Jurassic to late Cretaceous time. The compilation and re-evaluation of these data suggest that the genetic types of hydrothermal precious-metal vein deposits in the central and southeastern Korea varied with time. The Jurassic and early Cretaceous mineralizations are characterized by the Au-dominant type, but tend to change to the Au-Ag and/or Ag-dominant types at late Cretaceous. The Jurassic Au-dominant deposits commonly show several characteristics; prominent associations with pegmatites, simple massive vein morphologies, high fmeness values in ore-concentrating parts, and a distinctively simple ore mineralogy such as Fe-rich sphalerite, galena, chalcopyrite, Au-rich electrum, pyrrhotite and/or pyrite. The Cretaceous precious-metal deposits are generally characterized by some- features such as complex vein morphologies, low to medium fmeness values in the ore concentrates, and abundance of ore minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver. Mineralogical and fluid inclusion studies indicate that the Jurassic Au-dominant deposits in the central area were formed at the high temperature (about $300^{\circ}$ to $500^{\circ}C$) and pressure (about 4 to 5 kbars), whereas mineralizations of the Cretaceous Au-Ag and Ag-dominant deposits were occurred at the low temperature (about $200^{\circ}$ to $350^{\circ}C$) and pressure (<0.5 kbars) from the ore fluids containing more amounts of less-evolved meteoric waters.
Contrasts in the style of the gold-silver mineralization in geologic and tectonic settings in Korea, together with radiometric age data, reflect the genetically different nature of hydrothermal activities, coinciding with the emplacement age and depth of Mesozoic magmatic activities. It represents a clear distinction between the plutonic settings of the Jurassic Daebo orogeny and the subvolcanic environments of the Cretaceous Bulgugsa igneous activities. During the Daebo igneous activities (about 200-130 Ma) coincident with orogenic time, gold mineralization took place between 197 and 127 Ma. The Jurassic deposits commonly show several characteristics: prominent association with pegmatites, low Ag/Au ratios in the ore-concentrating parts, massive vein morphology and a distinctively simple mineralogy including Fe-rich sphalerite, galena, chalcopyrite, Au-rich eIectrum. pyrrhotite and/or pyrite. During the Bulgugsa igneous activities (120-60 Ma), the precious-metal deposits are generally characterized by such features as complex vein morphology, medium to high AgiAu ratios in the ore concentrates, and abundance of ore minerals including base-metal sulfides, Ag sulfides, native silver, Ag sulfosalts and Ag tellurides. Vein morphology, mineralogical, fluid inclusion and stable isotope results indicate the diverse genetic natures of hydrothermal systems. The Jurassic Au-dominant deposits were formed at the relatively high temperature (about 300 to 450$^{\circ}$C) and deep-crustal level (>3.0 kb) from the hydrothermal fluids containing more amounts of magmatic waters (3180; 5-10 %0). It can be explained by the dominant ore-depositing mechanisms as CO2 boiling and sulfidation, suggestive of hypo/mesothermal environments. In contrast, mineralization of the Cretaceous Au-Ag type (108-71 Ma) and Agdominant type (98-71 Ma) occurred at relatively low temperature (about 200 to 350$^{\circ}$C) and shallow-crustal level «1.0 kb) from the ore-fonning fluids containing more amounts of less-evolved meteoric waters (15180; -10-5%0). These characteristics of the Cretaceous precious-metal deposits can be attributed to the complexities in the ore-precipitating mechanisms (mixing, boiling, cooling), suggestive of epilmesothermal environments. Therefore, the differences of the emplacement depth between the Daebo and the Bulgugsa igneous activities directly influence the unique temporal and spatial association of the deposit type.
Over the last twenty years, farmers in Western Australia have begun to change land management practices to minimise the effects of salinity to agricultural land. A farm plan is often used as a guide to implement changes. Most plans are based on minimal data and an understanding of only surface water flow. Thus farm plans do not effectively address the processes that lead to land salinisation. A project at Broomehill in the south-west of Western Australia applied an approach using a large suite of geospatial data that measured surface and subsurface characteristics of the regolith. In addition, other data were acquired, such as information about the climate and the agricultural history. Fundamental to the approach was the collection of airborne geophysical data over the study area. This included radiometric data reflecting soils, magnetic data reflecting bedrock geology, and SALTMAP electromagnetic data reflecting regolith thickness and conductivity. When interpreted, these datasets added paddock-scale information of geology and hydrogeology to the other datasets, in order to make on-farm and in-paddock decisions relating directly to the mechanisms driving the salinising process. The location and design of surface-water management structures such as grade banks and seepage interceptor banks was significantly influenced by the information derived from the airborne geophysical data. To evaluate the effectiveness ofthis planning., one whole-farm plan has been monitored by the Department of Agriculture and the farmer since 1996. The implemented plan shows a positive cost-benefit ratio, and the farm is now in the top 5% of farms in its regional productivity benchmarking group. The main influence of the airborne geophysical data on the farm plan was on the location of earthworks and revegetation proposals. There had to be a hydrological or hydrogeological justification, based on the site-specific data, for any infrastructure proposal. This approach reduced the spatial density of proposed works compared to other farm plans not guided by site-specific hydrogeological information.
To understand the characteristics of uranium distribution, and the correlation of the uranium content and major constituents in uraniferous black slates from the Jinsan area of Ogcheon Fold Terrain, forty representative specimens were analyzed by mineralogical and radiometric techniques. According to statistical analysis, the uranium has a positive correlation with organic carbon and limonite, but a negative relation to muscovite and other opaques. The relationship with the highest and meaningful correlation is between log uranium and organic carbon. The log uranium-organic carbon correlation coefficient is 0.845 and these two constituents have about 71.4% association. It suggests that the abundance of organic carbon controlled the uranium precipitation. The relationship of organic carbon to log uranium can be expressed by following regression equation log ($U_3O_8{\times}10^4+1$)=-1.3447+2.5599 log (organic carbon). The multiple regression equation of different major components to log uranium is log ($U_3O_8{\times}10^4+1$)=0.77396+ 0.04465 (organic carbon)+0.00574 (quartz)-0.00964 (muscovite)+0.37827 (biotite)-0.02286 (clay substance)+0.01268 (other silicates)+0.1032 (barite)-0.00224 (apatite)+0.01606 (calcite)+0.08258 (hematite)-0.02406 (limonite)-0.01715 (other opaques).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.