• Title/Summary/Keyword: radiometric characteristics

Search Result 72, Processing Time 0.027 seconds

Radiometric Characteristics of KOMPSAT EOC Data Assessed by Simulating the Sensor Received Radiance

  • Kim, Jeong-Hyun;Lee, Kyu-Sung;Kim, Du-Ra
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.281-289
    • /
    • 2002
  • Although EOC data have been frequently used in several applications since the launch of the KOMPSAT-1 satellite in 1999, its radiometric characteristics are not clear due to the inherent limitations of the on-board calibration system. The radiometric characteristics of remotely sensed imagery can be measured by the sensitivity of radiant flux coming from various surface features on the earth. The objective of this study is to analyze the radiometric characteristics of EOC data by simulating the sensor- received radiance. Initially, spectral reflectance values of reference targets were measured on the ground by using a portable spectre-radiometer at the EOC spectrum. A radiative transfer model, LOWTRAN, then simulated the sensor-received radiance values of the same reference target. By correlating the digital number (DN) extracted from the EOC image to the corresponding radiance values simulated from LOWTRAN, we could find the radiometric calibration coefficients for EOC image. The radiometric gain coefficients of EOC are very similar to those of other panchromatic optical sensors.

Relative Radiometric Normalization for High-Spatial Resolution Satellite Imagery Based on Multilayer Perceptron (다층 퍼셉트론 기반 고해상도 위성영상의 상대 방사보정)

  • Seo, Dae Kyo;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.515-523
    • /
    • 2018
  • In order to obtain consistent change detection result for multi-temporal satellite images, preprocessing must be performed. In particular, the preprocessing related to the spectral values can be performed by the radiometric normalization, and relative radiometric normalization is generally utilized. However, most relative radiometric normalization methods assume a linear relationship between the two images, and nonlinear spectral characteristics such as phenological differences are not considered. Therefore, this study proposes a relative radiometric normalization which assumes nonlinear relationships that can perform compositive normalization of radiometric and phenological characteristics. The proposed method selects the subject and reference images, and then extracts the radiometric control set samples through the no-change method. In addition, spectral indexes as well as pixel values are extracted in order to consider sufficient information, and modeling of nonlinear relationships is performed through multilayer perceptron. Finally, the proposed method is compared with the conventional relative radiometric normalization methods, which shows that the proposed method is visually and quantitatively superior.

RADIOMETRIC CHARACTERISTICS OF KOMPSAT-2 HIGH RESOLUTION IMAGES

  • Chi, Jun-Hwa;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.390-393
    • /
    • 2007
  • KOMPSAT-2, the first Korean high resolution earth observing satellite, continuously acquires high resolution images since July 2006. The quality of satellite images should be geometrically and radiometrically ensured before distribution to users. This study focused on absolute radiometric calibration which is a prerequisite procedure to ensure the radiometric quality of optical satellite images. In this study, we performed reflectance-based vicarious calibration methods on several uniform targets collected through several field campaigns in 2007. The radiative transfer model, MODTRAN, was used to estimate the amount of energy received at the sensor. The energy reached at the sensor are affected by several factors such as reflectance of targets, atmospheric condition, geometry condition between Sun and the sensor, etc. This study proposes the absolute radiometric calibration coefficients of KOMPSAT-2 MSC images combining several types of collected data through field works and tried to compare dynamic range of sensor-detected energy with other commercial high resolution sensors.

  • PDF

Characteristics of COMS MI Radiometric Calibration

  • Cho, Young-Min
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.71-74
    • /
    • 2006
  • Communication Ocean Meteorological Satellite (COMS) is planned to be launched onto Geostationary Earth Orbit in 2008. The meteorological imager (MI) is one of COMS payloads and has 5 spectral channels to monitor meteorological phenomenon around the Korean peninsular intensively and of Asian-side full Earth disk periodically. The MI has on-board radiometric calibration capabilities called 'blackbody calibration' for infrared channels and 'space look' for infrared/visible channels, and radiometric response stability monitoring device called 'albedo monitor' for visible channel. Additionally the MI has on-board function called 'electrical calibration' for the check of imaging path electronics of both infrared and visible channels. The characterization of MI performance is performed to provide the pre-launch radiometric calibration data which will be used for in-orbit radiometric calibration with the on-board calibration outputs. The radiometric calibration of the COMS MI is introduced in the view point of instrument side in terms of in-orbit calibration devices and capabilities as well as the pre-launch calibration activities and expected outputs.

  • PDF

POST-LAUNCH RADIOMETRIC CALIBRATION OF KOMPSAT2 HIGH RESOLUTION IMAGE

  • Yoon, Jong-Suk;Lee, Kyu-Sung;Chi, Jun-Hwa;Lee, Dong-Han
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.402-405
    • /
    • 2006
  • Radiometric calibration of optical image data is necessary to convert raw digital number (DN) value of each pixel into a physically meaningful measurement (radiance). To extract rather quantitative information regarding biophysical characteristics of the earth surface materials, radiometric calibration is often essential procedure. A sensor detects the radiation of sunlight interacted atmospheric constituents. Therefore, the amount of the energy reaching at the sensor is quite different from the initial amount reflected from the surface. To achieve the target reflectance after atmospheric correct, an initial step is to convert DN value to at-sensor radiance. A linear model, the simplest radiometric model, is applied to averaged spectral radiance for this conversion. This study purposes to analyze the sensitivity of several factors affecting on radiance for carrying out absolute radiometric calibration of panchromatic images from KOMPSAT2 launched at July, 2006. MODTRAN is used to calculate radiance at sensor and reflectance of target is measured by a portable spectro-radiometer at the same time the satellite is passing the target for the radiometric calibration. As using different contents of materials composing of atmosphere, the differences of radiance are investigated. Because the spectral sensitivity of panchromatic images of KOMPSAT2 ranges from 500 to 900 nm, the materials causing scattering in visible range are mainly considered to analyze the sensitivity. According to the verified sensitivity, direct measurement can be recommenced for absolute radiometric calibration.

  • PDF

Characteristics of Precipitable Water Vapor and Liquid Water Path Retrieved from a Ground-based Microwave Radiometric Profiler at Haenam NCIO (해남 라디오미터로부터 산출된 가강수량과 구름물량의 분포특성)

  • Won, Hye Young;Kim, Yeon-Hee;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • Temporal distributions and characteristics of PWV (Precipitable Water Vapor) and LWP (Liquid Water Path) are investigated by using the microwave radiometric profiler at Haenam NCIO from 1 August 2007 to 31 July 2008. Temporal variations of PWV are closely connected with the thermal response of water vapor in atmosphere. The variations of LWP are characterized by the rainfall variation being basically attributable to the heavy rain-bearing clouds. The frequency distributions of PWV and LWP according to the four sky conditions ('clear', 'lightly cloudy', 'cloudy', and 'deeply cloudy') by total cloud amount at Wando Observatory corresponds with a change of slope in cumulative distribution function for PWV and LWP. There results implies that the classification of sky condition can be applied by using the distribution of PWV and LWP from microwave radiometric profiler.

Integrated Radiometric Signal Modeling for High Resolution Earth Observation Satellite Camera (고해상도 지구관측위성 카메라의 복사신호량에 대한 통합적 모델링)

  • Jang, Hong-Sul;Jung, Dae-Jun;Youk, Young-Chun;Lee, Seung-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.82-87
    • /
    • 2008
  • In this study, the radiometric signal modeling is performed for the high resolution earth observation system in visible spectral range from space. The medeling includes solar radiation as a source of the radiometric energy, atmosphere and surface albedo of earth, and the spaceborne camera characteristics for the integrated modeling. The final output of the radiometric modeling is the number of electron produced by the detector of electro-optical camera.

  • PDF

Radiometric Characteristics of Geostationary Ocean Color Imager (GOCI) for Land Applications

  • Lee, Kyu-Sung;Park, Sung-Min;Kim, Sun-Hwa;Lee, Hwa-Seon;Shin, Jung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.277-285
    • /
    • 2012
  • The GOCI imagery can be an effective alternative to monitor short-term changes over terrestrial environments. This study aimed to assess the radiometric characteristics of the GOCI multispectral imagery for land applications. As an initial approach, we compared GOCI at-sensor radiance with MODIS data obtained simultaneously. Dynamic range of GOCI radiance was larger than MODIS over land area. Further, the at-sensor radiance over various land surface targets were tested by vicarious calibration. Surface reflectance were directly measured in field using a portable spectrometer and indirectly derived from the atmospherically corrected MODIS product over relatively homogeneous sites of desert, tidal flat, bare soil, and fallow crop fields. The GOCI radiance values were then simulated by radiative transfer model (6S). In overall, simulated radiance were very similar to the actual radiance extracted from GOCI data. Normalized difference vegetation index (NDVI) calculated from the GOCI bands 5 and 8 shows very close relationship with MODIS NDVI. In this study, the GOCI imagery has shown appropriate radiometric quality to be used for various land applications. Further works are needed to derive surface reflectance over land area after atmospheric correction.

EVALUATION OF THE RADIOMETRIC AND SPECTRAL CHARACTERISTICS OF THE CAISS

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.243-246
    • /
    • 2008
  • The Compact Airborne Imaging Spectrometer System (CAISS) was jointly designed and developed as the hyperspectral imaging system by Korea Aerospace Research Institute (KARI) and ELOP inc., Israel. The primary mission of the CAISS is to acquire and provide full contiguous spectral information with high quality spectral and high spatial resolution for advanced applications in the field of remote sensing. The CAISS consists of six physical units; the camera system, the gyro-stabilized mount, the jig, the GPS/INS, the power inverter and distributor, and the operating system. These subsystems shall be tested and verified in the laboratory before the flight. Especially the camera system of the CAISS shall be calibrated and validated with the calibration equipments such as the integrated sphere and spectral lamps. To improve data quality and availability, it is the most important to understand the mechanism of hyperspectral imaging system and the radiometric and spectral characteristics. This paper presents the major characteristics of camera system on the CAISS and summarizes the results of radiometric and spectral experiment during preliminary system verification.

  • PDF

Validation of the Radiometric Characteristics of Landsat 8 (LDCM) OLI Sensor using Band Aggregation Technique of EO-1 Hyperion Hyperspectral Imagery (EO-1 Hyperion 초분광 영상의 밴드 접합 기법을 이용한 Landsat 8 (LDCM) OLI 센서의 방사 특성 검증)

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.399-406
    • /
    • 2013
  • The quality of satellite imagery should be improved and stabilized to satisfy numerous users. The radiometric characteristics of an optical sensor can be a measure of data quality. In this study, a band aggregation technique and spectral response function of hyperspectral images are used to simulate multispectral images. EO-1 Hyperion and Landsat-8 OLI images acquired with about 30 minutes difference in overpass time were exploited to evaluate radiometric coefficients of OLI. Radiance values of the OLI and the simulated OLI were compared over three subsets covered by different land types. As a result, the index of agreement shows over 0.99 for all VNIR bands although there are errors caused by space/time and sensors.