• Title/Summary/Keyword: radiometer

Search Result 358, Processing Time 0.035 seconds

Comparison of Land Surface Temperatures from Near-surface Measurement and Satellite-based Product

  • Ryu, Jae-Hyun;Jeong, Hoejeong;Choi, Seonwoong;Lee, Yang-Won;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.609-616
    • /
    • 2019
  • Land surface temperature ($T_s$) is a critical variable for understanding the surface energy exchange between land and atmosphere. Using the data measured from micrometeorological flux towers, three types of $T_s$, obtained using a thermal-infrared radiometer (IRT), a net radiometer, and an equation for sensible heat flux, were compared. The $T_s$ estimated using the net radiometer was highly correlated with the $T_s$ obtained from the IRT. Both values acceptably fit the $T_s$ from the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer)satellite. These results will enhance the measurement of land surface temperatures at various scales. Further, they are useful for understanding land surface energy partitioning to evaluate and develop land surface models and algorithms for satellite remote sensing products associated with surface thermal conditions.

A Study on the Detection Performance of the LPI Hopping Signal using a Channelization Method (채널화 방식을 이용한 저피탐 도약신호 감지 성능에 관한 연구)

  • Go, Min-Ho;Seo, Yoo-Seok;Kim, Hyoung-Joo;Nah, Sun-Phil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.6
    • /
    • pp.733-738
    • /
    • 2014
  • In this paper, the performance of the narrowband channelized radiometer that have a short detection time and high time-resolution was verified based on the theoretical formula. According to the simulation result, the channelized radiometer showed 2.5 dB superior detection performance compared to the broadband radiometer, but is more sensitive to the effects of noise than the broadband radiometer. Also the signal-to-noise of a channelized radiometer was changed dramatically according to the hop rate and jitter effect, which is linearly decreased as the change of two parameters.

Inverse Brightness Temperature Estimation for Microwave Scanning Radiometer

  • Park, Hyuk;Katkovnik, Vladimir;Kang, Gum-Sil;Kim, Sung-Hyun;Choi, Jun-Ho;Choi, Se-Hwan;Jiang, Jing-Shan;Kim, Yong-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.53-59
    • /
    • 2003
  • The passive microwave remote sensing has progressed considerably in recent years Important earth surface parameters are detected and monitored by airborne and space born radiometers. However the spatial resolution of real aperture measurements is constrained by the antenna aperture size available on orbiting platforms and on the ground. The inverse problem technique is researched in order to improve the spatial resolution of microwave scanning radiometer. We solve a two-dimensional (surface) temperature-imaging problem with a major intention to develop high-resolution methods. In this paper, the scenario for estimation of both radiometer point spread function (PSF) and target configuration is explained. The PSF of the radiometer is assumed to be unknown and estimated from the observations. The configuration and brightness temperature of targets are also estimated. To do this, we deal with the parametric modeling of observation scenario. The performance of developed algorithms is illustrated on two-dimensional experimental data obtained by the water vapor radiometer.

Operation and Application Guidance for the Ground Based Dual-band Radiometer (지상 기반 듀얼 밴드 라디오미터의 운영 및 활용 가이던스)

  • Jeon, Eun-Hee;Kim, Yeon-Hee;Kim, Ki-Hoon;Lee, Hee-Sang
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.441-458
    • /
    • 2008
  • A TP/WVP-3000A, ground-based microwave radiometer, that was first introduced to South Korea has been operated since August 22, 2007 at the National Center for Intensive Observation of Severe Weathers (NCIO). Using the dual-band, the radiometer provides temperature and humidity soundings from the surface up to 10 km height with the high-temporal resolution of a few minutes. In this study, the performance of the radiometer on the predictability of the high impact weathers was evaluated and various practical applications were investigated. To verify the retrieved profile data from the radiometer, temperature and relative humidity soundings are compared with those from the rawinsonde launched at the NCIO and Gwangju station. The root mean squared errors for temperature and relative humidity soundings were smaller under rainy weather conditions. The correlation coefficient between PWVs (Precipitable Water Vapors) obtained from the radiometer and Global Positioning System satellite at Mokpo station is 0.92 on average. In order to investigate the structure and characteristics of precipitation, stability indexes related to rainfall such as the Convective Available Potential Energy (CAPE), K-index, and Storm RElative Helicity (SREH) were calculated using windprofiler at the NCIO from 14 to 16 September, 2007. CAPE and K-index tended to be large when the thermodynamic unstability was strong. On the other hand, SREH index was dominantly large when the dynamic unstability was strong due to the passage of the typhoon 'Nari'.

Thermal calibration of Millimeter-wave radiometer (밀리미터파 복사계의 온도보정에 관한 연구)

  • Chae Yeon-Sik;Kim Soon-Koo;Rhee Eung-Ho;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.176-181
    • /
    • 2006
  • We have built the close range Dicke type radiometer with 35GHz of frequency, which consists of two stage low noise amplifier and diode detector to calibrate temperatures of materials. We have present thermal calibration methods using millimeter-wave radiometer. Output voltages linearly increase with temperatures between 299K and 309K. We are able to measure lower temperature using the liquid nitrogen although results are somewhat unstable.

Study on effective band of advanced microwave scanning radiometer (AMSR) for observing first year sea ice in the Okhotsk Sea by airborne microwave radiometer (AMR)

  • Nakayama, Masashige;Nishio, Fumihiko;Tanikawa, Tomonori;Cho, Kohei;Shimoda, Haruhisa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.456-461
    • /
    • 1999
  • It is very important for monitoring the interannual variability of sea ice extents in the Okhotsk Sea because the global warming has firstly appeared around the Okhotsk Sea, locating around the southernmost region of sea ice cover in the Northern Hemisphere. In order to develop the sea ice concentration algorithm by microwave sensors onboard satellite, electromagnetic properties of sea ice in the Okhotsk Sea, therefore, were observed by airborne microwave radiometer (AMR), which has the same frequencies as AMSR (Advanced Microwave Scanning Radiometer), ADEOS-II, launching on November, 2000. On this study, it is discussed how to make the image of AMR-EFOV and the video image with nadir angle under flight at the same time, and superimpose the brightness temperature data by AMR-EFOV on the video mosaiced images. For comparing SPOT image, it is clearly that the variation of brightness temperature is small in 89GHz V-pol without the sea ice types and increase at the lower frequency-band.

  • PDF

A Noise Re-radiation Calibration Technique in Interferometric Synthetic Aperture Radiometer for Sub-Y-type Array at Ka-Band

  • Seo Seungwon;Kim Sunghyun;Choi Junho;Park Hyuk;Lee Hojin;Kim Yonghoon;Kang Gumsil
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.577-580
    • /
    • 2004
  • To overcome with large size noise source distribution network design difficulty in interferometric radiometer system, especially for sub-Y-type array, a new on-board calibration technique using noise re-radiation is proposed in this paper. The suggested calibration technique is using noise re-radiation effect of center antenna after noise source injection from matched load. This approach is especially proper to sub-Y-type array interferometric synthetic aperture radiometer in mm-wave frequency band. Compared with noise injection network of a conventional synthetic aperture radiometer, the system mass, volume, and hardware complexity is reduced and cost-effective. Only one internal noise source, matched load, is used for injection using noise re-radiation technique a small set of sub-Y receiver channels is calibrated. Detailed calibration scenario is discussed and simulation results about noise re­radiation effect are presented.

  • PDF

CALIBRATION ISSUES OF SPACEBORNE MICROWAVE RADIOMETER DREAM ON STSAT-2

  • Singh, Manoj Kumar;Kim, Sung-Hyun;Chae, Chun-Sik;Lee, Ho-Jin;Park, Jong-Oh;Sim, Eun-Sup;Zhang, De-Hai;Jiang, Jing-Shan;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.398-401
    • /
    • 2006
  • Dual channel Radiometer for Earth and Atmospheric Monitoring (DREAM) is the main payload on Science and Technology SATellite-2 (STSAT-2) of Korea. DREAM is two-channel microwave radiometer with linear polarization, and operating at center frequencies of 23.8 GHz and 37 GHz. An equation for DREAM calibration is derived which accounts for losses and re-radiation in the microwave components of the radiometer due to physical temperature. This paper describes the radiometric calibration equation to get antenna temperature ($T_A$) from the measured output data. At lower altitude, the measured deep space temperature is contaminated by middle atmosphere and earth radiation. In this paper, we presented the detail mathematical formulation to find the altitude up to which cold source brightness temperature is not affected by earth and middle atmosphere radiation. The DREAMPFM data is used to calculate the performance parameters (linearity, sensitivity, dynamic range, and etc.) of the system.

  • PDF

Direct Detection Receiver for W-Band Radiometer (W-대역 라디오미터를 위한 Direct Detection 수신기)

  • Moon, Nam Won;Lee, Myung-Whan;Jung, Jin Mi;Kim, Yong Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.426-429
    • /
    • 2017
  • For the W-band remote sensing radiometer, direct detection type radiometer receiver is designed. The receiver should be low noise and high gain of 60 dB unlike communication and radar receiver. The W-band radiometer consist of 4-stage low noise, high gain amplifier, band pass filter and square law detector. The developed direct detection receiver show 4 GHz bandwidth, 56 dB gain, and 4,500 mV/mW voltage sensitivity at integrator output port for -20 dBm input power at 94 GHz.

Fabrication of Millimeter Wave Radiometer (밀리미터파 복사계의 제작)

  • Kim, Soon-Koo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.71-74
    • /
    • 2012
  • We have manufactured a close range Dicke type radiometer which consists of two stage low noise amplifier and diode detector. Frequency range of this system is 35 GHz. And this is used for studying temperature calibration on specific objects. We have present millimeter-wave radiometer's thermal calibration method and its characteristics. From absolute temperature 299K to 309K, in proportion to increase temperature, output voltages are linearly increased. In this case, undefined objects can be measured thermal noise temperature relatively. Overall from absolute temperature 214K to 309K, we have obtained relation of temperature and output voltage;V= 0.03601K - 10.70517.