• 제목/요약/키워드: radiometer

검색결과 358건 처리시간 0.027초

LANDSAT TM 자료에 의한 영남지역의 광산대조사 및 응용방법 개발(III) (Remote Sensing Application for the Mineralized Zone in Ryeongnam Area Using LANDSAT TM Data (III))

  • 姜必鍾;智光薰
    • 대한원격탐사학회지
    • /
    • 제5권2호
    • /
    • pp.91-107
    • /
    • 1989
  • The purpose of this study is to investigate ways to use Landsat TM data for geological mapping and minieralized area detection. The study was carried out in Kyongju-Pohang area where toseki and bentonite mines are distributed. Rock samples of 18 granites, andesites, toseki, betonites, sedimentary rocks and altered rocks in the study area were collected for the study. The radiometric measurtment of the rock samples were carried out with a radiometer in the laboratory and in the field. The Landsat TM bands 2,3,4,5,7 were used for the measurement. The radiometric characteristics of the sample were mainly processed by the principal component analysis. It was found that the pricipal component analysis of the radiometric characteristics of geologic materials is very useful for the detection of the alteration of rocks and grade of mineral contents. It is expected that the technique can be used in the future for the efficient exploration of minerals in this country and abroad.

Assessing Sea Surface Temperature in the Yellow Sea Using Satellite Remote Sensing Data

  • Lee, Kyoo-seock;Kang, Hee-Sook
    • 대한원격탐사학회지
    • /
    • 제6권1호
    • /
    • pp.39-47
    • /
    • 1990
  • The first Marine Observation Satellite(MOS) was launched by National Space Development Agency of Japan on February 19, 1987, and it is equipped with three sensons covering visible, infrared, and microwave region. One of them is Visible and Thermal Infrared Radiometer(VTIR) whose main objective is to detect the Sea Surface Temperature(SST). The objective of this study was to process the MOS data using Cray-2 supercomputer, and to assess the SST in the Yellow Sea. In order to implement this objective, the linear regression model between the ground truth data and the corresponding digital number of VTIR in MOS was used to establish the relationship. After testing the significance of the regression model, the SST map of the whole Yellow Sea was derived based on the model. The digital SST map representing the study area showed certain pattern about the SST of Yellow Sea in March and April. In conclusion, the VTIR data in MOS is also useful in investigating SST which provides the information about the Yellow Sea water current in the spring.

SWIR/VIS Reflectance Ratio Over Korea for Aerosol Retrieval

  • Lee, Kwon-Ho;Li, Zhangqing;Kim, Young-Joon
    • 대한원격탐사학회지
    • /
    • 제23권1호
    • /
    • pp.1-5
    • /
    • 2007
  • Relatively simplified method for determination of surface reflectance has been used by using the ratio between SWIR and VIS band reflectance over land surface. The surface reflectance ratios (SWIR/VIS) were estimated over land in Korea from Terra Moderate Resolution Imaging Spectre-radiometer (MODIS) L1 data. The ratios by using the minimum reflectance technique were lower than those by MODIS operational aerosol retrieval algorithm. Although the comparison between MODIS and sunphotometer Aerosol Optical Thickness (AOT) has a good correlation coefficient (R=0.84), slightly overestimated MODIS AOTs were shown with a slope of linear regression line of 0.89. The comparison between the ratio and AOT dearly exhibit that the error of MODIS AOT could be originated from the underestimated surface reflectances by MODIS operational algorithm.

Tropospheric Ozone Retrieval Algorithm Based on the TOMS Scanning Geometry

  • Kim, Jae-Hwan;Na, Sun-Mi;Newchurch, M.J.
    • 대한원격탐사학회지
    • /
    • 제19권1호
    • /
    • pp.11-19
    • /
    • 2003
  • This paper applies the Scan-Angle Method (SAM) to the Total Ozone Mapping Spectrometer (TOMS) aboard Earth Probe (EP) satellite for determining tropospheric ozone based on TOMS scan geometry. In the northern tropical Africa burning season, the distribution of the SAM-derived tropospheric ozone presents a tropospheric ozone enhancement related to biomass burning. This distribution is consistent with that of fire counts observed from Along Track Scanning Radiometer (ATSR) and that of carbon monoxide, the tropospheric ozone precursor, observed from Measurements of Pollution In The Troposphere (MOPITI). However, this feature is not shown in the distribution of tropospheric ozone derived from other TOMS-based algorithms for the northern burning season. In the high latitudes, the influence of pollution in the SAM results is seen over the northern continents in agreement with carbon monoxide for northern summer when the dynamical activity is weak in the northern hemisphere.

Radiometric Characteristics of KOMPSAT EOC Data Assessed by Simulating the Sensor Received Radiance

  • Kim, Jeong-Hyun;Lee, Kyu-Sung;Kim, Du-Ra
    • 대한원격탐사학회지
    • /
    • 제18권5호
    • /
    • pp.281-289
    • /
    • 2002
  • Although EOC data have been frequently used in several applications since the launch of the KOMPSAT-1 satellite in 1999, its radiometric characteristics are not clear due to the inherent limitations of the on-board calibration system. The radiometric characteristics of remotely sensed imagery can be measured by the sensitivity of radiant flux coming from various surface features on the earth. The objective of this study is to analyze the radiometric characteristics of EOC data by simulating the sensor- received radiance. Initially, spectral reflectance values of reference targets were measured on the ground by using a portable spectre-radiometer at the EOC spectrum. A radiative transfer model, LOWTRAN, then simulated the sensor-received radiance values of the same reference target. By correlating the digital number (DN) extracted from the EOC image to the corresponding radiance values simulated from LOWTRAN, we could find the radiometric calibration coefficients for EOC image. The radiometric gain coefficients of EOC are very similar to those of other panchromatic optical sensors.

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제19권5호
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

NOAA/AVHRR 자료 응용기법 연구 - 운정.지표온도, 반사도, 해수면 온도, 식생지수, 산불, 홍수 분석 - (A Study on the Application of NOAA/AVHRR Data -Analysis of cloud top and surface temperature,albedo,sea surface temperature, vegetation index, forest fire and flood-)

  • 이미선;서애숙;이충기
    • 대한원격탐사학회지
    • /
    • 제12권1호
    • /
    • pp.60-80
    • /
    • 1996
  • AVHRR(Advanced Very High Resolution Radiometer) on NOAA satellite provides data in five spectral, one in visible range, one in near infrared and three in thermal range. In this paper, application of NOAA/AVHRR data is studied for environment monitoring such as cloud top temperature, surface temperature, albedo, sea surface temperature, vegetation index, forest fire, flood, snow cover and so on. The analyses for cloud top temperature, surface temperature, albedo, sea surface temperature, vegetation index and forest fire showed reasonable agreement. But monitoring for flood and snow cover was uneasy due to the limitations such as cloud contamination, low spatial resolution. So this research had only simple purpose to identify well-defined waterbody for dynamic monitoring of flood. Based on development of these basic algorithms, we have a plan to further reseach for environment monitoring using AVHRR data.

SMOS L-band와 AMSR2 C-band 토양수분 자료의 변화특성 비교 (Comparison the Variability of SMOS L-band and AMSR2 C-band Soil Moisture Data)

  • 김묘정;김광섭
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.513-513
    • /
    • 2015
  • 정확한 유역 토양수분 정보는 홍수 예측의 정도를 크게 향상시키므로 공간 토양수분 정보를 획득하기 위하여 선진국에서는 위성 영상을 활용하여 토양수분을 관측하고 있다. 본 연구에서는 유럽우주기구 ESA(European Space Agency)에서 운영하는 SMOS(Soil Moisture and Ocean Salinity) L-band 토양수분 관측치와 일본 우주항공 연구개발 기구 JAXA(Japan Aerospace Exploration Agency)에서 운영하는 GCOM-W1 위성의 AMSR2(Advanced Microwave Scanning Radiometer 2) C-band 토양수분 자료를 비교 분석하였다. SMOS 토양수분, AMSR2 토양수분을 기상청 농업관측관서의 지상 관측 토양수분 자료와 비교한 그래프는 다음과 같다(Fig. 1). 상대적으로 깊은 관측심으로 인한 장점을 가짐에도 불구하고 RFI로 인한 L-band 토양수분 자료의 시공간 관측율이 C-band 토양수분자료에 비하여 낮아 활용성이 낮다. AMSR2 자료는 여름철을 제외한 모든 계절에 과소 추정하는 단점을 보이며 실제적 활용을 위해 지상자료와의 편이보정 과정이 필수적이라 판단된다.

  • PDF

ESTIMATION RAIN RATE FROM MICROWAVE RADIOMETER

  • Park K. W.;Kim Y. S.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.201-203
    • /
    • 2004
  • We present here, some of the studies carried for estimation of rainfall over land and oceanic regions in and around South Korea. We use active and passive microwave measurements from TRMM - TMI and Precipitation Radar (PR) respectively during a typhoon even named - RUSA that took place during 30 Aug. 2002. We have followed due approach by Yao at. all (2002) and examined the performance of their algorithm using two main predictor variable, named as Scattering Index (SI) and Polarization Corrected Brightness Temperature (PCT) while using TMI data. The rainfall rate estimated using PCT and SI shows some under-estimation as compared to the AWS rainfall products from the PR in common area of overlap. A larger database thus would be used in future. To establish a new rain rate algorithm over Korean region based on the present case study.

  • PDF

광학센서 기반의 토양수분을 이용한 농업적 가뭄 감시 (Agricultural drought monitoring using optical sensor-based soil moisture)

  • 서찬양
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.296-296
    • /
    • 2022
  • 농업적 가뭄은 토양의 수분함량(토양수분)이 마르기 시작하면서 식생 활동에 영향을 주는 것으로 정의할 수 있다. 광범위한 농업적 가뭄을 판별하기 위해 인공위성 자료를 토대로 토양수분을 산정하고 이를 이용해 가뭄지수를 산정하고, 가뭄 상태를 판별한다. 기존 인공위성 기반의 토양수분의 경우, microwave sensor에서 제공되는 밝기온도(brightness temperature)를 통해 토양수분을 추정하는 방식이 일반적으로 활용되었다. 하지만, microwave sensor에서 제공되는 자료들의 공간해상도가 10 km 이상이기 때문에, 한반도나 더 작게는 유역 단위, 행정 단위별 가뭄 분석을 하기에는 적합하지 않다. 이에 본 연구에서는 공간 해상도 500m의 광학센서(visible infrared imaging radiometer suite sensor (VIIRS))에서 제공되는 지표면 온도(land surface temperature)와 지표 반사도(land surface albedo) 자료들을 조합하여 토양수분을 산정하는 방식을 제안하고, 산출된 토양수분으로 농업적 가뭄을 모니터링한 결과를 제시하고자 한다. 기존의 microwave sensor로 산출된 토양수분 결과 값과의 비교 및 검증을 통해 광학센서를 통한 토양수분 산출물의 한반도 내 적용성을 확인할 수 있다.

  • PDF