• 제목/요약/키워드: radioactive waste repository

검색결과 322건 처리시간 0.026초

The Swiss Radioactive Waste Management Program - Brief History, Status, and Outlook

  • Vomvoris, S.;Claudel, A.;Blechschmidt, I.;Muller, H.R.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • 제1권1호
    • /
    • pp.9-27
    • /
    • 2013
  • Nagra was established in 1972 by the Swiss nuclear power plant operators and the Federal Government to implement permanent and safe disposal of all types of radioactive waste generated in Switzerland. The Swiss Nuclear Energy Act specifies that these shall be disposed of in deep geological repositories. A number of different geological formations and sites have been investigated to date and an extended database of geological characteristics as well as data and state-of-the-art methodologies required for the evaluation of the long-term safety of repository systems have been developed. The research, development, and demonstration activities are further supported by the two underground research facilities operating in Switzerland, the Grimsel Test Site and the Mont Terri Project, along with very active collaboration of Nagra with national and international partners. A new site selection process was approved by the Federal Government in 2008 and is ongoing. This process is driven by the long-term safety and feasibility of the geological repositories and is based on a step-wise decision-making approach with a strong participatory component from the affected communities and regions. In this paper a brief history and the current status of the Swiss radioactive waste management program are presented and special characteristics that may be useful beyond the Swiss program are highlighted and discussed.

Ventilation System Strategy for a Prospective Korean Radioactive Waste Repository (한국형 방사성 폐기물 처분장을 위한 환기시스뎀 전략)

  • Kim Jin;Kwon Sang-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제3권2호
    • /
    • pp.135-148
    • /
    • 2005
  • In the stage of conceptual design for the construction and operation of the geologic repository for radioactive wastes, it is important to consider a repository ventilation system which serves the repository working environment, hygiene & safety of the public at large, and will allow safe maintenance like moisture content elimination in repository for the duration of the repositories life, construction/operation/closure, also allowing safe waste transportation and emplacement. This paper describes the possible ventilation system design criteria and requirements for the prospective Korean radioactive waste repositories with emphasis on the underground rock cavity disposal method in the both cases of low & medium-level and high-level wastes. It was found that the most important concept is separate ventilation systems for the construction (development) and waste emplacement (storage) activities. In addition, ventilation network system modeling, natural ventilation, ventilation monitoring systems & real time ventilation simulation, and fire simulation & emergency system in the repository are briefly discussed.

  • PDF

Leachability of lead, cadmium, and antimony in cement solidified waste in a silo-type radioactive waste disposal facility environment

  • Yulim Lee;Hyeongjin Byeon;Jaeyeong Park
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2889-2896
    • /
    • 2023
  • The waste acceptance criteria for heavy metals in mixed waste should be developed by reflecting the leaching behaviors that could highly depend on the repository design and environment surrounding the waste. The current standards widely used to evaluate the leaching characteristics of heavy metals would not be appropriate for the silo-type repository since they are developed for landfills, which are more common than a silo-type repository. This research aimed to explore the leaching behaviors of cementitious waste with Pb, Cd, and Sb metallic and oxide powders in an environment simulating a silo-type radioactive waste repository. The Toxicity Characteristic Leaching Procedure (TCLP) and the ANS 16.1 standard were employed with standard and two modified solutions: concrete-saturated deionized and underground water. The compositions and elemental distribution of leachates and specimens were analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES) and energy-dispersive X-ray spectroscopy combined with scanning electron microscopy (SEM-EDS). Lead and antimony demonstrated high leaching levels in the modified leaching solutions, while cadmium exhibited minimal leaching behavior and remained mainly within the cement matrix. The results emphasize the significance of understanding heavy metals' leaching behavior in the repository's geochemical environment, which could accelerate or mitigate the reaction.

The Feasibility of Natural Ventilation in Radioactive Waste Repository Using Rock Cavern Disposal Method (동굴처분 방식을 사용하는 방사성 폐기물 처분장의 자연 환기 타당성 평가)

  • Kim Jin;Kwon Sang Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제3권3호
    • /
    • pp.183-192
    • /
    • 2005
  • Natural ventilation in radioactive waste repositories is considered to be less efficient than mechanically forced ventilation for the repository working environment and hygiene & safety of the public at large, for example, controlling the exposure of airborne radioactive particulate matter. It is, however, considered to play an important role and may be fairly efficient for maintaining environmental conditions of the repository over the duration of its lifetime, for example, moisture content and radon (Rn) gas elimination in repository. This paper describes the feasibility of using natural ventilation which can be generated in the repository itself, depending on the conditions of the natural environment during the periods of repository construction and operation. Evidences from natural cave analogues, actual measurements of natural ventilation pressures in mountain traffic tunnels with vertical shafts, and calculations of airflow rates with given natural ventilation pressures indicate possible benefits from passive ventilation for the prospective Korean radioactive waste repository. Natural ventilation may provide engineers with a cost-efficient method for heat and moisture transfer, and radon (Rn) gas elimination in a radioactive waste repository. The overall thermal performance of the repository may be improved. The dry-out period may be extended, and the seepage flux likely would be decreased.

  • PDF

Probabilistic Safety Assessment for High Level Nuclear Waste Repository System

  • Kim, Taw-Woon;Woo, Kab-Koo;Lee, Kun-Jai
    • Journal of Radiation Protection and Research
    • /
    • 제16권1호
    • /
    • pp.53-72
    • /
    • 1991
  • An integrated model is developed in this paper for the performance assessment of high level radioactive waste repository. This integrated model consists of two simple mathematical models. One is a multiple-barrier failure model of the repository system based on constant failure rates which provides source terms to biosphere. The other is a biosphere model which has multiple pathways for radionuclides to reach to human. For the parametric uncertainty and sensitivity analysis for the risk assessment of high level radioactive waste repository, Latin hypercube sampling and rank correlation techniques are applied to this model. The former is cost-effective for large computer programs because it gives smaller error in estimating output distribution even with smaller number of runs compared to crude Monte Carlo technique. The latter is good for generating dependence structure among samples of input parameters. It is also used to find out the most sensitive, or important, parameter groups among given input parameters. The methodology of the mathematical modelling with statistical analysis will provide useful insights to the decision-making of radioactive waste repository selection and future researches related to uncertain and sensitive input parameters.

  • PDF

A Study on Ventilation System of Underground Low-Intermediate Radioactive Waste Repository (지하 동굴식 중-저준위 방사성 폐기물 처분장의 환기시스템 고찰)

  • Kim, Young-Min;Kwon, O-Sang;Yoon, Chan-Hoon;Kwon, Sang-Ki;Kim, Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제5권1호
    • /
    • pp.65-78
    • /
    • 2007
  • The pollutants (Rn, CH, CO, HS, radioactive gas from radiolysis) were generated from the process of construction and operation of underground repository, and after disposal of low-intermediate radioactive waste inside there must be controlled by a ventilation system to distribute them in area where enough air is supported. Therefore, a suitable technical approach is needed especially at an underground repository that is equipped with many entry tunnels, storage tunnels, exhaust-blowing tunnels, and vertical shafts in complicated network form. For the technical approach of such a ventilation system, WIPP (Waste Isolation Pilot Plant) in U. S and SFR (Slutforvar for Reaktorafall) low-intermediate radioactive waste repository in Sweden were selected as the models, for calculating the required air quantity, organizing a ventilation network considering cross section, length, surface roughness of the air passage, and describing a calculation of resistance of each circuit. Based on these procedures, a best suited ventilation system was completed with designing proper capacity of fans and operating plan of vertical shafts. As a result of comparing the two repositories based on the geometry dimensions and ventilation facility equipment operation, more parallel circuit as in WIPP, brought decrease in resistance for entire system leading to reduce of operating costs, and the larger cross-sectional area of the SFR, the greater the percentage of disposal capacity. Accordingly, the mixture of parallel circuit of WIPP repository for reducing resistance and SFR repository formation for enlargement of disposal capacity would be the most rational and efficient ventilation system.

  • PDF

Structural stability analysis of waste packages containing low- and intermediate-level radioactive waste in a silo-type repository

  • Byeon, Hyeongjin;Jeong, Gwan Yoon;Park, Jaeyeong
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1524-1533
    • /
    • 2021
  • The structural stability of a waste package is essential for containing radioactive waste for the long term in a repository. A silo-type disposal facility would require more severe verification for the structural integrity, because of radioactive waste packages staked with several tens of meters and overburdens of crushed rocks and shotcretes. In this study, structural safety was analyzed for a silo-type repository, located approximately 100 m below sea level in Gyeongju, Korea. Finite element simulation was performed to investigate the influence of the loads from the backfilling materials and waste package stacks on the mechanical stress of the disposed of wastes and containers. It was identified that the current design of the waste package and the compressive strength criterion for the solidified waste would not be enough to maintain structural stability. Therefore, an enhanced criterion for the compressive strength of the solidified waste and several reinforced structural designs for the disposal concrete container were proposed to prevent failure of the waste package based on the results of parametric studies.