• Title/Summary/Keyword: radioactive metal

Search Result 276, Processing Time 0.025 seconds

A SE Approach to Designing and Developing of Motion Control for Radioactive Waste Decontamination

  • Ngbede, Utah Michael;Olaide, Oluwasegun Adebena;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • Decontamination of systems, structures and components (SSC) during the decommissioning of a Nuclear Power Plant (NPP) can be for a variety of reasons. The main reasons for decontamination are: to reduce the contamination of SSC to a reasonably low level, to reduce the potential for the spread of contaminants into the environment and to reduce the cost of disposal due to the reduced level of contamination in a particular SSC. The decontamination technique can be aggressive or non-aggressive depending on the intent after the decontamination process. Aggressive decontamination technique is used when the intent is not to reuse the SSC while a non-aggressive decontamination technique is used with the intent of SSC reuse. For different SSCs there are different decontamination techniques that can be used, each having its own advantages and drawbacks. Metal components such as pipes in the nuclear power plant account for a large amount of nuclear wastes generated. Some of these wastes can be reused if the contaminant level is reduced to an acceptable level. Laser ablation is a non-aggressive decontamination technique that can be used to reduce the contamination in pipes to an acceptable level with no secondary waste generated during the process. The operation and control of a laser ablation device must be precise to achieve a high decontamination factor. This precision can be achieved by a well-designed motion control system. For this purpose, a motion control system was developed consisting of two parts: the first part being the precise control of the laser ablation device inside the pipe and the second part is the control of the laser ablation device outside the pipe. This paper describes the Systems Engineering approach for the development process of a motion control system for the Laser decontamination system.

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) inorganic composite: Part 1. Dechlorination Behavior of LiCl-KCl and Characteristics of Consolidation (SiO2-Al2O3-P2O5 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 1. LiCl-KCl의 탈염화 반응거동 및 고형화특성)

  • Cho, In-Hak;Park, Hwan-Seo;Ahn, Soo-Na;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • The metal chloride wastes from a pyrochemical process to recover uranium and transuranic elements has been considered as a problematic waste difficult to apply to a conventional solidification method due to the high volatility and low compatibility with silicate glass. In this study, a dechlorination approach to treat LiCl-KCl waste for final disposal was adapted. In this study, a $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic composite as a dechlorination agent was prepared by a conventional sol-gel process. By using a series of SAPs, the dechlorination behavior and consolidation of reaction products were investigated. Different from LiCl waste, the dechlorination reaction occurred mainly at two temperature ranges. The thermogravimetric test indicated that the first reaction range was about $400^{\circ}C$ for LiCl and the second was about $700^{\circ}C$ for KCl. The SAP 1071 (Si/Al/P=1/0.75/1 in molar) was found to be the most favorable SAP as a dechlorination agent under given conditions. The consolidation test revealed that the bulk shape and the densification of consolidated forms depended on the SAP/Salt ratios. The leaching test by PCT-A method was performed to evaluate the durability of consolidated forms. This study provided the basic information on the dechlorination approach. Based on the experimental results, the dechlorination method using a $SiO_2-Al_2O_3-P_2O_5$ (SAP) could be considered as one of alternatives for the immobilization of waste salt.

Monitoring of Radioactivity and Heavy Metal Contamination of Dried Processed Fishery Products (건조 수산가공식품의 방사능 및 중금속 오염도 조사)

  • Lee, Ji-Yeon;Jeong, Jin-A;Jeon, Jong-Sup;Lee, Seong-Bong;Kwon, Hye-Jung;Kim, Jeong-Eun;Lee, Byoung-Hoon;Mo, A-Ra;Choi, Ok-Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.3
    • /
    • pp.248-256
    • /
    • 2021
  • A total of 120 samples corresponding to 12 categories of dried processed fishery products distributed in Gyeonggi-do were examined for radioactivity contamination (131I, 134Cs, 137Cs) and heavy metals (lead, cadmium, arsenic, and mercury). One natural radioactive material, 40K, was detected in all products, while the artificial radioactive materials 131I, 134Cs and 137Cs were not detected at above MDA (minimum detectable activity) values. The detection ranges of heavy metals converted by biological basis were found as follows: Pb (N.D.-0.332 mg/kg), Cd (N.D.-2.941 mg/kg), As (0.371-15.007 mg/kg), Hg (0.0005-0.0621 mg/kg). Heavy metals were detected within standard levels when there was an acceptable standard, but the arsenic content was high in most products, although none of the products had a permitted level of arsenic. In the case of dried processed fishery products, there are products that are consumed by restoring moisture to its original state, but there are also many products that are consumed directly in the dry state, so it will be necessary to set permitted levels for heavy metals considering this situation in the future. In addition, Japan has decided to release contaminated water from the Fukushima nuclear power plant into the ocean, so there is high public concern about radioactivity contamination of food, including fishery products. Therefore, continuous monitoring of various food items will be necessary to ease consumers' anxiety.

Source Term Characterization for Structural Components in $17{\times}17$ KOFA Spent Fuel Assembly ($17{\times}17$ KOFA 사용후핵연료집합체내 구조재의 방사선원항 특성 분석)

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Heui-Joo;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.347-353
    • /
    • 2010
  • Source terms of metal waste comprising a spent fuel assembly are relatively important when the spent fuel is pyroprocessed, because cesium, strontium, and transuranics are not a concern any more in the aspect of source term of permanent disposal. In this study, characteristics of radiation source terms for each structural component in spent fuel assembly was analyzed by using ORIGEN-S with a assumption that 10 metric tons of uranium is pyroprocessed. At first, mass and volume for each structural component of the fuel assembly were calculated in detail. Activation cross section library was generated by using KENO-VI/ORIGEN-S module for top-end piece and bottom-end piece, because those are located at outer core with different neutron spectrum compared to that of inner core. As a result, values of radioactivity, decay heat, and hazard index were reveled to be $1.40{\times}10^{15}$ Bequerels, 236 Watts, $4.34{\times}10^9m^3$-water, respectively, at 10 years after discharge. Those values correspond to 0.7 %, 1.1 %, 0.1 %, respectively, compared to that of spent fuel. Inconel 718 grid plate was shown to be the most important component in the all aspects of radioactivity, decay heat, and hazard index although the mass occupies only 1 % of the total. It was also shown that if the Inconel 718 grid plate is managed separately, the radioactivity and hazard index of metal waste could be decreased to 20~45 % and 30~45 %, respectively. As a whole, decay heat of metal waste was shown to be negligible in the aspect of disposal system design, while the radioactivity and hazard index are important.

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea (한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링)

  • Jaehoon Choi;SunJu Park;Hyunsoo Seo;Hyun Tai Ahn;Jeong-Hwan Lee;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.847-870
    • /
    • 2023
  • The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.

Protective Effects of Chemical Drugs on the Course of Uranium-induced Acute Renal Failure (우라늄오염에 의한 신부전증에 미치는 제염제의 방호효과)

  • Kim, Tae-Hwan;Chung, In-Yong;Kim, Sung-Ho;Kim, Kyeng-Jung;Bang, Hyo-Chang;Yoo, Seong-Yul;Chin, Soo-Yil
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.27-39
    • /
    • 1990
  • Appreciable radiation exposures certainly were occurred in the reactor burn-up, the nuelear fall-out and the surroundings of nuclear installations with radioactive effluents. Therefore, radioactive nuclides is not only potentially hazardous to workers of nuclear power plants and related industrials, but also the wokers who handle radioactive nuclides in biochemical research and nuclear medicine diagnostics. And in the case of occurring the nuclear accidents, the early medical treatment of radiation injury should be necessary but little is established medical procedures to decontaminate the victims of internal contamination of radioactive nuclides in korea. Accordingly, to achieve the basic data for protective roles and medical treatment of radiation injury, the present studies were carrid out to evaluate the decontamination of uranium by the chemical drugs. The results observed were summarized as follows: 1. The combined treatmet group of sodium bicarbonate and saline with uranyl nitrate injection simultaneously and the dithiothreitol group that was administered 30 minutes after uranyl nitrate injection were increased significantly in the change of body weight than uranyl nitrate-only group (P<0.005). 2. All the experimental groups were increased the fluid intake and urine volume on the uranyl nitrate-induced acute renal failure. but the combined treatment group of sodium bicarbonate and saline with uranyl nitrate injection simultaneously and the dithiothreitol group that was administered 30 minutes after uranyl nitrate injection have the higher increment of fluid intake and urine volume (P<0.05). 3. When sodium bicarbonate and saline was treated with uranyl nitrate injection simultaneously. and dithiothreitol was administered 30 minutes after uranyl nitrate injection. there was significantly reduced in BUN concentration (P<0.01). 4. When dithiothreitol was administered 30 minutes after uranyl nitrate injection. there was reduced more significantly on the increment of serum creatinine concentration than that observed in uranyl nitrate-only group(P<0.01). but when the combined treatment of sodium bicarbonate and saline with uranyl nitrate simultaneously, there was still. albeit much less marked. decrease in serum creatinine concentration. 5. The sodium bicarbonate and saline was treated with uranyl nitrate simultaneously and dithiothreitol was administered at 30 minutes after uranyl nitrate were excreted markedly higher urine creatinine concentration than the uranyl nitrate-only group. 6. Uranyl nitrate has been used in experimental animals to produce hydropic degeneration and swelling of proximal tubules, disappearance of microvilli and brush border or necrosis in the kidney and centrilobular necrosis, congestion, and telangiectasia of the liver. When the sodium bicarbonate and saline was treated with uranyl nitrate simultaneously, and dithiothreitol was administered. 30 minutes after uranyl nitrate, there was more marked the protective effect than uranyl nitrate-only group. Finally, if the sodium bicarbonate and saline may administered as quickly as possible each time that some risk for internal contamination, with uranium, and dithiothreitol is administered 30 minutes after uranium contamination, there ameliorates the course of uranyl nitrate-induced acute renal failure.and this effect is assocciated with prevention of uranium (heavy metal)-induced alterations in BUN, serum creatinine, urine creatinine, fluid intake, urine volume and body weight.

  • PDF

Preparation of Nickel Hexacyanoferrate Ion Exchanger for Electrochemical Separation of Cations (양이온의 전기화학적 분리를 위한 페리시안니켈 이온교환체의 제조에 관한 연구)

  • Lee, Ji Hyun;Hwang, Young Gi
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • Although chemical sedimentation and ion exchange are usually applied to the treatment of heavy metal ions and radioactive cations, they have some serious disadvantages like a great consumption of chemicals, the disposal of valuable metals, and the secondary pollution of soil by the solid-waste. The advanced countries recently have studied the electrochemical ion exchange, combined electrochemical reduction and ion exchange, for the development of the alternative technique. This study has been performed to investigate the optimum condition for the preparation of the nickel hexacyanoferrate (NiHCNFe) which is an electrochemical ion exchanger. NiHCNFe film was deposited on the surface of nickel plate by chemical method or electrochemical method. The morphology and composition of NiHCNFe were observed by SEM and EDS, respectively. The peak current density of NiHCNFe was measured from the cyclic voltammograms of the continuous oxidation-reduction reaction in a parallel plane ion exchange electrode reactor. It was found that the chemical preparation method was better than the electrochemical method. The concentrated NiHCNFe was apparently deposited on nickel plate when dipping in the preparing solution for 118 h, especially. It also had a best durable performance as an ion exchange electrode.

Crevice Corrosion Properties of PWR Structure Materials Under Reductive Decontamination Conditions (환원제염조건에서 가압경수로 구조재료의 틈부식 특성)

  • Jung, Jun-Young;Park, Sang Yoon;Won, Hui Jun;Choi, Wang Kyu;Moon, Jei Kwon;Park, So Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.199-209
    • /
    • 2014
  • Crevice corrosion tests were conducted to examine the corrosion properties of HYBRID (HYdrazine Base Reductive metal Ion Decontamination) which was developed to decontaminate the PWR primary coolant system. To compare the corrosion properties of HYBRID with commonly existing decontamination agents, oxalic acid (OA) and citric oxalic acid (CITROX) were also examined. Type 304 Stainless Steel (304 SS) and Alloy 600 which are major components of the primary coolant system in Pressurized Water Reactor (PWR) were evaluated. Crevice corrosion tests were conducted under very aggressive conditions to confirm quickly the corrosion properties of primary coolant system structure components which have high corrosion resistance. Pitting and IGA were occurred in crevice surface under OA and CITROX conditions. But localized corrosion was not observed under HYBRID condition. Very low corrosion rate of less than $1.3{\times}10^{-3}{\mu}m/h$ was observed under HYBRID condition for both materials. On the other hand, under OA condition, Alloy 600 indicated comparatively uniform corrosion rate of $4.0{\times}10^{-2}{\mu}m/h$ but 304 SS indicated rapid accelerated corrosion in lower case than pH 2.0. In case of HYBRID condition, general corrosion and crevice corrosion were scarcely occurred. Therefore, material integrity of HYBRID in decontamination of primary coolant system in pressurized water reactor (PWR) reactor was conformed.

Separation and Purification for the Determination of Samarium and its Isotopes in PWR Spent Nuclear Fuels (PWR 사용후핵연료 중 Sm 동위원소 정량을 위한 분리 및 정제)

  • Kim, Jung Suk;Jeon, Young Shin;Choi, Kwang Soon;Park, Soon Dal;Lee, Chang Heon;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.291-299
    • /
    • 2001
  • A method of separation and purification of Sm for quantitation of Sm isotopes from various fission products in PWR spent nuclear fuels has been studied. Simulated solution containing inactive metal ions(Cs, Ba, Gd, Eu, Sm and Nd) in place of radioactive fission products was prepared. Sm was separated with 0.5 M $HNO_3$/80% MeOH after washing with 1 M $HNO_3$/90% MeOH on AG $1{\times}8$, anion exchange resin. Sm was purified on cation exchange resin, AG $50W{\times}8$, pretreated with 0.2 M alpha-hydroxisobutyric acid(pH 4.5-4.6) to remove Ba causing isobaric effect Sm from PWR spent fuel. As a result of mass spectrometric measurement, eluted Sm portion did not include isobars form other elements such as Gd, Eu, Pm, Nd and BaO. The contents of Sm and its isotopes($^{147}Sm$, $^{148}Sm$, $^{149}Sm$, $^{150}Sm$, $^{151}Sm$, $^{152}Sm$ and $^{154}Sm$) in spent fuel were determined by isotope dilution mass spectrometric method spiking $^{154}Sm$.

  • PDF

Chemical Stability Evaluation of Ceramic Materials for Liquid Cadmium Cathode (액체카드뮴음금용 세라믹 소재의 화학적 안정성 평가)

  • Ku, Kwang-Mo;Ryu, Hong-Youl;Kim, Seung-Hyun;Kim, Dae-Young;Hwang, Il-Soon;Sim, Jun-Bo;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • LCC (Liquid cadmium cathode) is used for electrowinning in pyroprocessing to recover uranium and transuranic elements simultaneously. It is one of the core technologies in pyroprocessing with higher proliferation resistance than a wet reprocessing because LCC-cell does not separate TRU from uranium. The crucible which holds the LCC is technically important because it should be nonconducting material to prevent deposition of metallic elements on the crucible outer surface. The chemical stability is also crucial factor to choose crucible material due to the strong reactivities of TRU and possible incorporation of Li metal during the operation. In this study, the chemical stabilities of four kinds of representative ceramic materials such as $Al_2O_3$, MgO, $Yl_2O_3$ and BeO were thermodynamically and experimentally evaluated at $500^{\circ}C$ with simulated LCC. The contact angle of LCC on ceramic materials was measured as function of time to predict chemical reactivity. $All_2O_3$ showed poorest chemical stability and the pores in BeO contributed to a decreases in contact angle. MgO and $Y_2O_3$ have superior chemical stability among the materials.