• 제목/요약/키워드: radioactive ions

검색결과 116건 처리시간 0.038초

Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash

  • P. Sopapan;U. Lamdab;T. Akharawutchayanon;S. Issarapanacheewin;K. Yubonmhat;W. Silpradit;W. Katekaew;N. Prasertchiewchan
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.516-522
    • /
    • 2023
  • The co-precipitation process plays a key role in the decontamination of radionuclides from low and intermediate levels of liquid waste. For that reason, the removal of Cs ions from waste solution by the co-precipitation method was carried out. A simulated liquid waste (133Cs) was prepared from a 0.1 M CsCl solution, while wastewater generated by washing steel ash served as a representative of radioactive cesium solution (137Cs). By co-precipitation, potassium ferrocyanide was applied for the adsorption of Cs ions, while nickel nitrate and iron sulfate were selected for supporting the precipitation. The amount of residual Cs ions in the CsCl solution after precipitation and filtration was determined by ICP-OES, while the radioactivity of 137Cs was measured using a gamma-ray spectrometer. After cesium removal, the amount of cesium appearing in both XRD and SEM-EDS was analyzed. The removal efficiency of 133Cs was 60.21% and 51.86% for nickel nitrate and iron sulfate, respectively. For the ash-washing solution, the removal efficiency of 137Cs was revealed to be more than 99.91% by both chemical agents. This implied that the co-precipitation process is an excellent strategy for the effective removal of radioactive cesium in waste solution treatment.

방사성 폐수 내 방사성 이온 제거방법 (How to Remove Radioactive Ions in Radioactive Waste)

  • 신도형;임지원;박성균;서창희;박헌휘
    • 멤브레인
    • /
    • 제25권6호
    • /
    • pp.478-487
    • /
    • 2015
  • 본 총설논문에서는 과거 방사능누출 사고사례를 제시하고 그에 따른 위험성을 논하였다. 또한 방사성 폐액 내의 방사성 이온들을 제거하기 위한 방법을 대별하고 실증사례들을 열거하였다. 여러 가지 방법을 복합적으로 사용한 실험결과 및 특허가 많이 있지만, 국내기술이 해외기술에 비해 미미한 실정이다. 후에 일어날 수도 있는 사고에 대비해서라도 국내 기술력의 발전과 경쟁력은 꼭 필요하다. 본 논문을 통해 방사성 이온 제거에 대한 현재 기술상황을 고찰하고 발전가능성에 대해 알아보고자 하였다.

Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes

  • Wang, Jianlong;Zhuang, Shuting
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.328-336
    • /
    • 2020
  • Cesium is a major product of uranium fission, which is the most commonly existed radionuclide in radioactive wastes. Various technologies have been applied to separate radioactive cesium from radioactive wastes, such as chemical precipitation, solvent extraction, membrane separation and adsorption. Crown ethers and calixarenes derivatives can selectively coordinate with cesium ions by ion-dipole interaction or cation-π interaction, which are promising extractants for cesium ions due to their promising coordinating structure. This review systematically summarized and analyzed the recent advances in the crown ethers and calixarenes derivatives for cesium separation, especially focusing on the adsorbents based on extractants for cesium removal from aqueous solution, such as the grafting coordinating groups (e.g. crown ether and calixarenes) and coordinating polymers (e.g. MOFs) due to their unique coordination ability and selectivity for cesium ions. These adsorbents combined the advantages of extraction and adsorption methods and showed high adsorption capacity for cesium ions, which are promising for cesium separation The key restraints for cesium separation, as well as the newest progress of the adsorbents for cesium separation were also discussed. Finally, some concluding remarks and suggestions for future researches were proposed.

5-Bromo-Ph4-BTPhen Ligand for Selective Removal of Strontium and Cobalt From Water

  • Jang, Jiseon;Harwood, Laurence M.;Cowell, Joe;Afsar, Ashfaq;Lee, Dae Sung
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2018년도 춘계학술논문요약집
    • /
    • pp.183-183
    • /
    • 2018
  • In this study, 5-bromo-2,9-bis(5,6-diphenyl-1,2,4-triazin-3-yl)-1,10-phenanthroline (5-bromo-Ph4-BTPhen) was synthesized and evaluated for its ability to remove major radionuclides ($Cs^+$, $Sr^{2+}$, and $Co^{2+}$). The synthesized ligand removed both $Sr^{2+}$ and $Co^{2+}$ from $1mg\;L^{-1}$ aqueous solutions with extraction efficiencies of up to 99% at neutral and alkaline pH. The $Sr^{2+}$ and $Co^{2+}$ removal efficiencies decreased as a consequence of the higher bonding strengths of competing metal ions to the N-donor atoms in the cavity of the ligand; competing divalent ions affected the $Sr^{2+}$ and $Co^{2+}$ removal efficiencies more than monovalent ions.

  • PDF

수질오염 제염을 위한 세슘 선택성 상자성 코어 무기복합제염제 개발 (Development of Cesium-selective Paramagnetic Core Inorganic Composite Agent for Water Decontamination)

  • 홍성표;강보선
    • 방사선산업학회지
    • /
    • 제18권2호
    • /
    • pp.127-132
    • /
    • 2024
  • Large amounts of liquid radioactive waste or radioactive contaminated water could be produced during the treatment of radiation accidents or during the dismantling and decontamination process of nuclear power plants. Since most of the decontamination agents to date are difficult to recover after adsorption of radioactive isotopes, their use in open environments such as rivers, reservoirs, or oceans is limited. In this study, as a radioactive decontamination agent that can overcome the current limitations when used in an open environment, a paramagnetic core inorganic composite (PMCIC) decomposite agent with high selectivity to cesium ions was developed. PMCore was prepared by synthesizing paramagnetic iron oxide nanoparticles, and inorganic crystals such as metal-ferrocyanide were conjugated to the surface so that PMCore could be selective to cesium ions. The developed PMCIC could be easily recovered from the water by magnetism and could adsorb up to 94 μM of Cs atoms per 1 g of PMCIC.

오염된 물로부터 이온교환수지를 이용한 방사성이온 제거 (Removal of Radioactive Ions from Contaminated Water by Ion Exchange Resin)

  • 신도형;주고운;정성일;임지원
    • 공업화학
    • /
    • 제27권6호
    • /
    • pp.633-638
    • /
    • 2016
  • 본 연구에서는 상용화된 양이온교환수지, 음이온교환수지, 혼합이온교환수지 각각 3종을 이용하여 Cs과 I 등의 방사성이온을 포함하고 있는 오염수 중 방사성 이온을 분리하는 연구를 하였다. 실험은 상온에서 회분식으로 진행하였으며, 이온교환수지의 양을 달리하여 각각의 이온교환수지에 대한 Cs와 I의 제염성능을 비교하였다. 이온크로마토그라피 기기로 농도분석을 한 결과, D사의 이온교환수지의 대체적으로 이온교환능력이 높은 결과 값을 가졌으며, 공통적으로 이온교환수지의 양이 적을 때, 이온교환수지 질량 대비 제염성능이 높은 것을 알 수 있었다. D사의 양이온교환수지의 질량이 적을 때, Cs 이온에 대한 이온교환용량은 0.199 meq/g, 음이온교환수지의 I 이온에 대한 이온교환용량은 0.344 meq/g의 결과 값을 확인할 수 있었으며, 혼합이온수지를 사용했을 때에는 I 이온에 대한 이온교환용량이 0.33 meq/g으로, D사의 이온교환수지가 다른 이온교환수지에 비해 특히 I에 대한 이온교환능력이 높은 것을 알 수 있었다.