• Title/Summary/Keyword: radio telescope

Search Result 190, Processing Time 0.023 seconds

Measuring AGN Core-shift Effect by Extended KVN with Global Baselines

  • Jung, Taehyun;Dodson, Richard;Han, Seog-Tae;Byun, Do-Young;Sohn, Bong Won;Rioja, Maria J.;Honma, Mareki;Stevens, Jamie;de Vincente, Pablo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.43.3-44
    • /
    • 2015
  • Very Long Baseline Interferometry (VLBI) at millimeter wavelengths results in the highest angular resolutions achieved in astronomy and has a unique access to emission regions that are inaccessible with any other approach or at longer wavelengths. The simultaneous multi-frequency VLBI system in the Korean VLBI Network (KVN) is considered one of the most effective systems for compensating the atmospheric phase fluctuations, which is particularly bothersome at mm-VLBI. We have been demonstrating its performance and uniqueness at mm-VLBI observations. As a results, international VLBI partners from Japan, China, Australia and EU have expressed their interest on the KVN style simultaneous multi-frequency system. In this talk, we will report the activities for extending the simultaneous multi-frequency system to global VLBI network and introduce its science driver, measuring AGN core-shift effects.

  • PDF

Star formation and TDGs in the debris of interacting systems

  • Sengupta, Chandreyee;Dwarakanath, K.S.;Saikia, D.J.;Scott, T.C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.34.2-34.2
    • /
    • 2013
  • Star formation beyond the galaxy discs and the principles governing it have attracted a lot of recent attention and the advent of ultraviolet (UV) and mid-infrared (MIR) telescopes like the GALEX and Spitzer have enabled major advances in such studies. In order to study the HI gas properties such as the morphology, kinematics and column density distributions, and their correlation with the star forming zones, especially in the tidal bridges, tails and debris, we carried out an HI survey of a set of Spitzer-observed interacting systems using the Giant Metrewave Radio Telescope (GMRT). Here we present results from three of these systems, Arp86, Arp181 and Arp202. In Arp86, we detect excellent star-gas correlation in the star forming tidal bridges and tails. In Arp181, we find the two interacting galaxies to be highly gas depleted and the entire gas of the system is found in the form of a massive tidal debris about 70 kpc from the main galaxies. In all three cases, Arp86, Arp181 and Arp202, the tidal debris seem to host ongoing star formation. We also detect three new candidate tidal dwarf galaxies (TDG) in these systems with large quantities of gas associated with them.

  • PDF

HI LINEWIDTHS, ROTATION VELOCITIES AND THE TULLY-FISHER RELATION

  • Rhee, Myung-Hyun;Broeils, Adrick H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.89-112
    • /
    • 2005
  • We determine the rotation velocities of 108 spiral and irregular galaxies (XV-Sample) from first-order rotation curves from position-velocity maps, based on short 21-cm observations with the Westerbork Synthesis Radio Telescope (WSRT). To test the usual random motion corrections, we compare the global HI linewidths and the rotation velocities, obtained from kinematical fits to two-dimensional velocity fields for a sample of 28 galaxies (RC-Sample), and find that the most frequently used correction formulae (Tully & Fouque 1985) are not very satisfactory. The rotation velocity parameter (the random-motion corrected HI linewidth: W?), derived with these corrections, may be statistically equal to two times the true rotation velocity, but in individual cases the differences can be large. We analyse, for both RC- and XV-Samples, the dependence of the slope of, and scatter in the Tully-Fisher relation on the definition of the rotation velocity parameters- For the RC-Sample, we find that the scatter in the Tully-Fisher relation can be reduced considerably when the rotation velocities derived from rotation curves are used instead of the random-motion corrected global H I linewidths. No such reduction in the scatter is seen for XV-Sample. We conclude that the reduction of the scatter in the Tully-Fisher relation seems to be related to the use of two-dimensional velocity information: accurate rotation velocity and kinematical inclination.

FRACTAL DIMENSIONS OF INTERSTELLAR MEDIUM: I. THE MOLECULAR CLOUDS IN THE ANTIGALACTIC CENTER

  • LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.137-141
    • /
    • 2004
  • We have estimated the fractal dimension of the molecular clouds in the Antigalactic Center based on the $^{12}CO$ (J = 1- 0) and $^{13}CO$ (J = 1- 0) database obtained using the 14m telescope at Taeduk Radio Astronomy Observatory. Using a developed code within IRAF, we were able to identify slice-clouds, and determined the dispersions of two spatial coordinates as well as perimeters and areas. The fractal dimension of the target region was estimated to be D = 1.34 for low resolution $^{12}CO$ (J = 1 - 0) database, and D = 1.4 for higher resolution $^{12}CO$ (J = 1 - 0) and $^{13}CO$ (J = 1 - 0) database, where $P {\propto} A^{D/2}$. The sampling rate (spatial resolution) of observed data must be an important parameter when estimating fractal dimension. Our database with higher resolution of 1 arcminute, which is corresponding to 0.2 pc at a distance of 1.1 kpc, gives us the same estimate of fractal dimension to that of local dark clouds. Fractal dimension is apparently invariant when varying the threshold temperatures applied to cloud identification. According to the dispersion pattern of longitudes and latitudes of identified slice-clouds, there is no preference of elongation direction.

PROBING GALAXY FORMATION MODELS IN COSMOLOGICAL SIMULATIONS WITH OBSERVATIONS OF GALAXY GROUPS

  • HABIB. G., KHOSROSHAHI;GOZALIASL, GHASSEM;FINOGUENOV, ALEXIS;RAOUF, MOJTABA;MIRAGHEE, HALIME
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.349-353
    • /
    • 2015
  • We use multi-wavelength observations of galaxy groups to probe the formation models for galaxy formation in cosmological simulations, statistically. The observations include Chandra and XMM-Newton X-ray observations, optical photometry and radio observations at 1.4 GHz and 610 MHz. Using a large sample of galaxy groups observed by the XMM-Newton X-ray telescope as part of the XMM-Large Scale Survey, we carried out a statistical study of the redshift evolution of the luminosity gap for a well defined mass-selected group sample and show the relative success of some of the semi-analytic models in reproducing the observed properties of galaxy groups up to redshift z ~ 1.2. The observed trend argues in favour of a stronger evolution of the feedback from active galactic nuclei at z < 1 compared to the models. The slope of the relation between the magnitude of the brightest cluster galaxy and the value of the luminosity gap does not evolve with redshift and is well reproduced by the models. We find that the radio power of giant elliptic galaxies residing in galaxy groups with a large luminosity gap are lower compared to giant ellipticals of the same stellar masses but in typical galaxy groups.

High-Resolution Observations of the Molecular Clouds Associated with the Huge H II Region CTB 102 (거대 수소 이온화 영역 CTB 102와 연관된 분자운의 고분해능 관측)

  • Kang, Sung-Ju;Marshall, Brandon;Kerton, C.R.;Kim, Youngsik;Choi, Minho;Kang, Miju
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.71.1-71.1
    • /
    • 2019
  • We report the first high-resolution (sub-arcminute) large-scale mapping $^{12}CO$ and $^{13}CO$ observations of the molecular clouds associated with the giant outer Galaxy H II region CTB 102 (KR 1). These observations were made using a newly commissioned receiver on the 13.7-m radio telescope at the Taeduk Radio astronomy Observatory (TRAO). Our observations show that the molecular clouds have a spatial extent of $60{\times}35pc$ and a total mass of $10^{4.8}-10^{5.0}$ solar mass, Infrared data from WISE and 2MASS were used to identify and classify the YSO population associated with ongoing star formation activity within the molecular clouds. Moving away from the H II region, there is an age/class gradient consistent with sequential star formation. The infrared and molecular line data were combined to estimate the star formation efficiency (SFE) of the entire cloud as well as the SFE for various sub regions of the cloud.

  • PDF

High-resolution mass models of the Large Magellanic Cloud

  • Kim, Shinna;Oh, Se-Heon;For, Bi-Qing;Sheen, Yun-Kyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.71.1-71.1
    • /
    • 2021
  • We perform disk-halo decomposition of the Large Magellanic Cloud (LMC) using a novel HI velocity field extraction method, aimed at better deriving its HI kinematics and thus mass distribution in the galaxy including both baryons and dark matter. We decompose all the line-of-sight velocity profiles of the combined HI data cube of the LMC, taken from the Australia Telescope Compact Array (ATCA) and Parkes radio telescopes with an optimal number of Gaussian components. For this, we use a novel tool, the so-called BAYGAUD which performs profile decomposition based on Bayesian MCMC techniques. From this, we disentangle turbulent non-ordered HI gas motions from the decomposed gas components, and produce an HI bulk velocity field which better follows the global circular rotation of the galaxy. From a 2D tilted-ring analysis of the HI bulk velocity field, we derive the rotation curve of the LMC after correcting for its transverse, nutation and precession motions. The dynamical contributions of baryons like stars and gaseous components which are derived using the Spitzer 3.6 micron image and the HI data are then subtracted from the total kinematics of the LMC. Here, we present the bulk HI rotation curve, the mass models of stars and gaseous components, and the resulting dark matter density profile of the LMC.

  • PDF

Mass models of the Large Magellanic Cloud: HI gas kinematics

  • Kim, Shinna;Oh, Se-Heon;For, Bi-Qing;Sheen, Yun-Kyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.60.3-61
    • /
    • 2020
  • We perform disk-halo decomposition of the Large Magellanic Cloud (LMC) using a novel HI velocity field extraction method, aimed at better deriving its HI kinematics and thus the dark matter density profile. For this, we use two newly developed galaxy kinematic analysis tools, BAYGAUD and 2DBAT which have been used for the kinematic analysis of resolved galaxies from Australian Square Kilometre Array (ASKAP) observations like WALLABY which is an all-sky HI galaxy survey in southern sky. By applying BAYGAUD to the combined HI data cube of the LMC taken with the Australia Telescope Compact Array (ATCA) and Parkes radio telescopes, we decompose all the line-of-sight velocity profiles into an optimal number of Gaussian components based on Bayesian MCMC techniques. From this, we disentangle turbulent non-circular gas motions from the overall rotation of the galaxy. We then derive the rotation curve of the LMC by applying 2DBAT to the separated circular motions. The rotation curve reflecting the total kinematics of the LMC, dark and baryonic matters is then be combined with the mass models of baryons, mainly stellar and gaseous components in order to examine the dark matter distribution. Here, we present the analysis of the extracted HI gas maps, rotation curve, and J, H and K-band surface photometry of the LMC.

  • PDF

12 CO, 13CO, AND C18 OBSERVATIONS TOWARD OMC-1 (OMC-1의 12 CO, 13CO, C18O의 관측)

  • 천문석;송혜정;손영종
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.1
    • /
    • pp.7-18
    • /
    • 2002
  • Interstellar cabon monoxide and its isotopes were observed with the 13.7m radio telescope of the Daeduk Radio Astronomy Observatory toward Orion Molecular Cloud-1 (OMC-1). We derive the excitation temperature, optical depth, column density, and isotopic abundance ratios from the observed lines of $^{12}CO,^{13}CO,\;and\;C^{18}O$ inside of the region of $11'{\times}11'$. The optical depths of $^{13}CO$ were obtained to be 0.1~0.4, while those of $C^{18}O$ to be 0.01~0.03. The isotopic ratios $^{12}C/^{13}C$ were also estimated to be 2~60. We could not find the radial isotopic ratio $^{12}C/^{13}C$ gradient in the OMC-1.

MULTI-FREQUENCY RADIO OBSERVATIONS OF MOLECULAR CLOUDS IN THE IMMEDIATE VICINITIES OF HB3 (초신성 잔해 HB3와 인접 분자운의 다파장 전파관측)

  • KIM KWANG-TAE;LEE CHANG-WON
    • Publications of The Korean Astronomical Society
    • /
    • v.13 no.1 s.14
    • /
    • pp.149-166
    • /
    • 1998
  • The structure and environments of the molecular clouds near the SNR $HB3(G132.7\pm1.3)$ are studied. The molecular complex which is located at the southern rim of HB3 was proposed by former investigators as the one interacting with HB3. This complex region of $2^{\circ}\times2^{\circ}\;at\;l=133^{\circ}$ has been observed at $^{12}CO,\;^{13}CO,\;J=1-0\;at\;a\;1'$, resolution with the 14-m radio telescope at Taeduk Radio Astronomy Observatory. We have reached to the following four conclusions. The possibility that these molecular complex and HB3 are interacting with each other cannot be supported with any of our data. The morphologies of the two show no similarities. Neither particular features for the interaction are found in the CO lines. The hypothetical 'Molecular wall' which was expected to exist on the northwestern rim of HB3 as a cause for the noncircular morphology of HB3 is turned out to be nonexistent in CO. The molecular complex which resembles a 'bar' at a low resolution is now resolved into a U-shaped shell. It seems that the U-shape is consist of two independent components. No peculiarities, such as unseen masses or bright stars capable of forming HlI regions, are found within the U-shape region. The total mass included in the complex is estimated to be $M_{total}\;=\;2.9\~8.4\times10^5\;M_\bigodot$, which is in good agreement with previous observations within errors. Considering about 12 clumps distinguishable within the complex, the total mass implies that masses of each of clumps are on the order of $10^4\;M_\bigodot$, which makes these good objects for further studies in relation to star-formation. Especially the clumps associated with W3 are worthy for more high resolution observations for better understanding of astrophysical phenomenon ongoing in them.

  • PDF