• Title/Summary/Keyword: radio noise

Search Result 719, Processing Time 0.023 seconds

A Wideband ${\Delta}{\Sigma}$ Frequency Synthesizer for T-DMB/DAB/FM Applications in $0.13{\mu}m$ CMOS (T-DMB/DAB/FM 수신기를 위한 광대역 델타시그마 분수분주형 주파수합성기)

  • Shin, Jae-Wook;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.75-82
    • /
    • 2010
  • This paper presents a wideband ${\Delta}{\Sigma}$ fractional-N frequency synthesizer for a multi-band single chip CMOS RFIC transceivers. A wideband VCO utilizes a 6-bit switched capacitor array bank for 2340~3940 MHz frequency range. VCO frequency calibration circuit is designed for optimal capacitor bank code selection before phase locking process. It finishes the calibration process in $2{\mu}s$ over the whole frequency band. The LO generation block has selectable multiple division ratios of ${\div}2$, ${\div}16$, and ${\div}32$ to generate LO I/Q signals for T-DMB/DAB/FM Radio systems in L-Band (1173~1973 MHz), VHF-III (147~246 MHz), VFH-II (74~123 MHz), respectively. The measured integrated phase noise is quite low as it is lower than 0.8 degree RMS over the whole frequency band. Total locking time of the ${\Delta}{\Sigma}$ frequency synthesizer including VCO frequency calibration time is less than $50{\mu}s$. The wideband ${\Delta}{\Sigma}$ fractional-N frequency synthesizer is fabricated in $0.13{\mu}m$ CMOS technology, and it consumes 15.8 mA from 1.2 V DC supply.

An Effective Mitigation Method on the EMI Effects by Splitting of a Return Current Plane (귀환 전류 평면의 분할에 기인하는 복사 방출 영향의 효과적인 대책 방법)

  • Jung, Ki-Bum;Jun, Chang-Han;Chung, Yeon-Choon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.376-383
    • /
    • 2008
  • Generally a return current plane(RCP) of high speed digital and analog part is partitioned. This is achieved in order to decrease the noise interference between subsystem in PCBs(Printed Circuit Boards). However, when the connected signal line exists between each subsystem, this partition will cause unwanted effects. In a EMI(Electromagnetic Interference) point of view, the partition of the return current plane becomes a primary factor to increase the radiated emission. Component bridge(CB) is used for the way of maintaining radiated emission, still specific user's guide doesn't give sufficient principle. In a view point of EMI, design principle of multi-CB using method will be analyzed by measurement. And design principle of noise mitigation will be provided. Generally interval of multi-CB is ${\lambda}/20$ ferrite bead. In this study, When multi-CB connection is applied, design principle of ferrite bead and chip resistor is proved by measurement. Multi-connected chip resistance$(0{\Omega})$ is proved to be more effective design method in the point of EMI.

An Effective Mitigation Method on the Signal-Integrity Effects by Splitting of a Return Current Plane (귀환 전류 평면의 분할에 기인하는 신호 무결성의 효과적인 대책 방법)

  • Jung, Ki-Bum;Jun, Chang-Han;Chung, Yeon-Choon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.366-375
    • /
    • 2008
  • Generally a return current plane(RCP) of high speed digital and analog part is partitioned. This is achieved in order to decrease the noise interference between subsystem in PCBs(Printed Circuit Boards). However, when the connected signal line exists between each sub system, this partition will cause unwanted effects. In a circuital point of view, RCP partition has a bad influence upon signal integrity. In a EMI(Electromagnetic Interference) point of view, the partition of the return current plane becomes a primary factor to increase the radiated emission. Component bridge(CB) is usecl for the way of maintaining signal integrity, still specific user's guide doesn't give sufficient principle. In a view point of signal integrity, design principle of multi-CB using method will be analyzed by measurement and simulation. And design principle of noise mitigation will be provided. Generally interval of CB is ${\lambda}/20$ ferrite bead. In this study. When multi-CB connection is applied, design principle of ferrite bead and chip resistor is proved by measurement and simulation. Multi-connected chip resistance$(0{\Omega})$ is proved to be more effective design method in the point of signal integrity.

Radio Frequency Circuit Module BGA(Ball Grid Array) (Radio Frequency 회로 모듈 BGA(Ball Grid Array) 패키지)

  • Kim, Dong-Young;Jung, Tae-Ho;Choi, Soon-Shin;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.8-18
    • /
    • 2000
  • We presented a BGA(Ball Grid Array) package for RF circuit modules and extracted its electrical parameters. As the frequency of RF system devices increases, the effect of its electrical parasitics in the wireless communication system requires new structure of RF circuit modules because of its needs to be considered of electrical performance for minimization and module mobility. RF circuit modules with BGA packages can provide some advantages such as minimization, shorter circuit routing, and noise improvement by reducing electrical noise affected to analog and digital mixed circuits, etc. We constructed a BGA package of ITS(Intelligent Transportation System) RF module and measured electrical parameters with a TDR(Time Domain Reflectometry) equipment and compared its electrical parasitic parameters with PCB RF circuits. With a BGA substrate of 3${\times}$3 input and output terminals, we have found that self capacitance of BGA solder ball is 68.6fF, and self inductance 146pH, whose values were reduced to 34% and 47% of the value of QFP package structure. S11 parameter measurement with a HP4396B Network Analyzer showed the resonance frequency of 1.55GHz and the loss of 0.26dB. Routing length of the substrate was reduced to 39.8mm. Thus, we may improve electrical performance when we use BGA package structures in the design of RF circuit modules.

  • PDF

A study on the EMI in special power distribution zone on ship (선내 특별 전원 분배구역의 EMI에 관한 연구)

  • Park, Jong-Sung;Choi, Gi-Do;Kim, Jong-Woo;Cho, Hyung-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.730-736
    • /
    • 2014
  • Test standards for electrical and electronic equipment required for ship operations is applying the IEC-60533 standard. However, although a test procedure and a specified regulation are clearly defined in the deck and bridge zone and general power distribution zone, they are not regulated in the special power distribution zone with ship propulsion system. For these reasons, the costs for additional research and development have been invested. In this paper, we was measured power noise in a special power distribution zone in ship and we were compared and analyzed values measured. The actual experiments are performed on the ship of Korea Maritime and Ocean University. As a result, the acquired data on Hanbada shows that loop antenna with low frequency band(160kHz) and ultra log antenna with high frequency band(1.97GHz)occur about 6-8dB differences and about 8.7 difference respectively. Also, the acquired data on Hannara shows that each loop antenna of 1MHz, 11MHz, and 25MHz occurs about 7dB difference about 4-5dB differences respectively. so standard of Special distribution zone must be specified by comparative analysis of data obtained by the experiment more.

A Study on the Noise Reduction Method for Data Transmission of VLBI Data Processing System (VLBI 자료처리 시스템의 데이터 전송에서 잡음방지에 관한 연구)

  • Son, Do-Sun;Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Jung, Jin-Seung;Oh, Chung-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • KJJVC(Korea-Japan Joint VLBI Correlator) was installed at the KJCC(Korea-Japan Correlation Center) and has been operated by KASI(Korea Astronomy and Space Science Institute) from 2009. KJNC is able to correlate the VLBI observed data through KVN(Korean VLBI Network), VERA(VLBI Exploration of Radio Astrometry), and JVN(Japanese VLBI Network) and its joint network array. And it is used exclusively as computer in order to process the observed data for the scientific purpose KJJVC used the VSI(VLBI Standard Interface) as the VLBI international standard at the data input-output specification between each component. Especially, for correlating the observed data, the data is transmitted with 1024Mbps speed between Mark5B high-speed playback and RVDB(Raw VLBI Data Buffer). The EMI(Electromagnetic lnterference), which is occurred by data transmission with high-speed, cause the data loss and the loss occurrence is frequently often for long transmission cable. Finally it will be caused the data recognition error by decreasing the voltage level of digital data signal. In this paper, in order to minimize the data loss by measuring the EMI noise level in transmission of the VSI specification, the 3 methods such as 1) RC filtering method, 2) lmpedance matching using Microstrip line, and 3) Signal buffering method using Differential line driver, were proposed. To verify the effectiveness of each proposed method, the performance evaluation was conducted by implementing and simulations for each method. Each proposed method was effectively confirmed as the high-speed data transmission of the VSI specification.

A Radio-Frequency PLL Using a High-Speed VCO with an Improved Negative Skewed Delay Scheme (향상된 부 스큐 고속 VCO를 이용한 초고주파 PLL)

  • Kim, Sung-Ha;Kim, Sam-Dong;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.23-36
    • /
    • 2005
  • PLLs have been widely used for many applications including communication systems. This paper presents a VCO with an improved negative skewed delay scheme and a PLL using this VCO. The proposed VCO and PLL are intended for replacing traditional LC oscillators and PLLs used in communication systems and other applications. The circuit designs of the VCO and PLL are based on 0.18um CMOS technology with 1.8V supply voltage. The proposed VCO employs subfeedback loops using pass-transistors and needs two opposite control voltages for the pass transistors. The subfeedback loops speed up oscillation depending on the control voltages and thus provide a high oscillation frequency. The two voltage controls have opposite frequency gain characteristics and result in low phase-noise. The 7-stage VCO in 0.18um CMOS technology operates from $3.2GHz\~6.3GHz$ with phase noise of about -128.8 dBc/Hz at 1MHz frequency onset. For 1.8V supply voltage, the current consumption is about 3.8mA. The proposed PLL has dual loop-filters for the proposed VCO. The PLL is operated at 5GHz with 1.8V supply voltage. These results indicate that the proposed VCO can be used for radio frequency operations replacing LC oscillators. The circuits have been designed and simulated using 0.18um TSMC library.

A Design and Fabrication of a Compact Ka Band Transmit/Receive Module Using a Quad-Pack (쿼드팩을 이용한 소형 Ka 대역 송수신(T/R) 모듈의 설계 및 제작)

  • Oh, Hyun-Seok;Yeom, Kyung-Whan;Chong, Min-Kil;Na, Hyung-Gi;Lee, Sang-Joo;Lee, Ki-Won;Nam, Byung-Chang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.389-398
    • /
    • 2011
  • In this paper, the design and fabrication of a transmit/receive(T/R) module for Ka-band phased array radar is presented. A 5bit digital phase shifter and digital attenuator were used in common for both transmitter and receiver considering unique Ka-band characteristic. The circulator was excluded in the T/R module and was placed outside T/R module. The transmitting power per element antenna is designed to be about 1 W and the noise figure is designed to be below 8 dB. The designed T/R module RF part has a compact size of $5\;mm{\times}4\;mm{\times}57\;mm$. In order to implement the T/R module, MMICs used in T/R module was separately assessed before assembly of the designed T/R module. The transmitter of the fabricated T/R module shows about 1 W at 5 dBm unit module input power and the receiver shows a gain of about 20 dB and a noise figure of below 8 dB as expected in the design stage.

Performance analysis of SNR and BER for radiation pattern reconfigurable antenna (인체 부착용 방사패턴 재구성 안테나의 SNR 및 BER 성능 분석)

  • Lee, Chang Min;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4125-4130
    • /
    • 2015
  • This paper presents the communication performance for the radiation pattern reconfigurable antenna in the wearable device measuring bio signal (temperature, blood pressure, pulse etc.) of human body. The operational frequency is 2.4 - 2.5 GHz, which covers Bluetooth communication bandwidth. The maximum gain of the antennas is 1.96 dBi. The proposed antenna is efficiently transmitting and receiving signal by generating two opposite beam directions using two RF switches (PIN diode). Also, we investigated how radiation pattern changes according to three angles ($30^{\circ}$, $90^{\circ}$, $150^{\circ}$) of Top Loading. In this paper, we measured and compared the SNR (Signal-to-Noise Ratio) and BER (Bit Error Rate) performances of the proposed antennas in the condition between an ideal environment of anechoic chamber and smart house existing practical electromagnetic interferences (Universal Software Radio Peripheral, USRP). Throughout the comparing the results of the measurement of two cases, we found that the SNR is degraded over 5dB in average and BER is increased over ten times in maximum, therefore, it is confirmed that the error rate of receiving signal is increased. The measured results of SNR and BER value in this paper able to expect the performance degrading by the interference from the electromagnetic devices.

Performance of Cooperative NOMA Systems with Cognitive User Relay (상황인지 사용자 릴레이를 채택한 협동 NOMA 시스템의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.69-75
    • /
    • 2018
  • Recently, Non-orthogonal multiple access (NOMA) has been focused for the next generation multiple access, which has more spectral efficiency under the limited spectrum bandwidth. Moreover, the spectrum efficiency can be improved by cognitive radio in which the unlicensed secondary users can access the spectrum that is used by the licensed primary user under the limited interference. Hence, we consider the combination of NOMA and cognitive radio, and derive the performance of the cognitive cooperative NOMA system. For the cooperation, a relay is selected among near users, and the selection combining is assumed at a far user. The outage probability of the selected relay and the far user is derived in closed-form, respectively. The provided numerical results are matched well with the Monte Carlo simulation. Numerical results showed that the performance of the relay is affected from the power allocation coefficient, the minimum outage probability is observed at 0.86 of the power allocation coefficient for far user under the given conditions. More than 15 dB of signal-to-noise ratio is required to meet the outage probability of $1{\times}10^{-13}$ for the far user with the frequency acquisition probability of 0.5 compared to that of 1. It shows that the performance of the far user is very sensitive to the acquisition probability of the cognitive relay.