• Title/Summary/Keyword: radio noise

Search Result 718, Processing Time 0.024 seconds

Cooperative Spectrum Sensing with Distance Based Weight for Cognitive Radio Systems (인지무선 시스템을 위한 거리기반 가중치가 적용된 협력 스펙트럼 센싱)

  • Lee, So-Young;Lee, Jae-Jin;Kim, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.45-50
    • /
    • 2010
  • In this paper, we analysis the performance of cooperative spectrum sensing with distance based weight for cognitive radio (CR) systems and CR systems sense the spectrum of the licensed user by using a energy detection method. Threshold is determined in accordance with the constant false alarm rate (CFAR) algorithm for energy detection. The signal of licensed user is OFDM signal and the wireless channel between a licensed user and CR systems is modeled as Gaussian channel. From the simulation results, the cooperative spectrum sensing with distance based weight combining (DWC) and equal gain combing (EGC) methods shows higher spectrum sensing performance than single spectrum sensing does. And the detection probability performance with the DWC is higher than that with the EGC.

Automatic National Image Interpretability Rating Scales (NIIRS) Measurement Algorithm for Satellite Images (위성영상을 위한 NIIRS(Natinal Image Interpretability Rating Scales) 자동 측정 알고리즘)

  • Kim, Jeahee;Lee, Changu;Park, Jong Won
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.725-735
    • /
    • 2016
  • High-resolution satellite images are used in the fields of mapping, natural disaster forecasting, agriculture, ocean-based industries, infrastructure, and environment, and there is a progressive increase in the development and demand for the applications of high-resolution satellite images. Users of the satellite images desire accurate quality of the provided satellite images. Moreover, the distinguishability of each image captured by an actual satellite varies according to the atmospheric environment and solar angle at the captured region, the satellite velocity and capture angle, and the system noise. Hence , NIIRS must be measured for all captured images. There is a significant deficiency in professional human resources and time resources available to measure the NIIRS of few hundred images that are transmitted daily. Currently, NIIRS is measured every few months or even few years to assess the aging of the satellite as well as to verify and calibrate it [3]. Therefore, we develop an algorithm that can measure the national image interpretability rating scales (NIIRS) of a typical satellite image rather than an artificial target satellite image, in order to automatically assess its quality. In this study, the criteria for automatic edge region extraction are derived based on the previous works on manual edge region extraction [4][5], and consequently, we propose an algorithm that can extract the edge region. Moreover, RER and H are calculated from the extracted edge region for automatic edge region extraction. The average NIIRS value was measured to be 3.6342±0.15321 (2 standard deviations) from the automatic measurement experiment on a typical satellite image, which is similar to the result extracted from the artificial target.

File System Design and Software Development for Correlation Result Analysis (상관결과 분석을 위한 파일 시스템 설계 및 소프트웨어 개발)

  • Oh, Se-Jin;Kan-ya, Yukitoshi;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Oh, Chung-Sik;Yun, Young-Joo;Jung, Jin-Seung;Jung, Dong-Kyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.181-190
    • /
    • 2013
  • In this paper, we designed file system in order to utilize data analysis by using correlation result from Daejeon correlator including related software development. Correlation results are consisted of visibility component (amplitude and phase) of radio source, but for data analysis of correlation result, various information such as weather, radio telescope position, observation time, radio source position, source type, and receiver noise temperature are needed. In this paper, we designed file system as a directory-structure for making use of these informations at Linux system for analyzing data and developed software to make file system. To verify the effectiveness of designed file system and developed software, file system generation experiment is conducted, and then astronomers accepted that there is no severe problem for scientific analysis using designed file system.

Partial Relay Selection in Decode and Forward Cooperative Cognitive Radio Networks over Rayleigh Fading Channels

  • Zhong, Bin;Zhang, Zhongshan;Zhang, Dandan;Long, Keping;Cao, Haiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3967-3983
    • /
    • 2014
  • The performance of an partial relay selection on the decode-and-forward (DF) mode cognitive radio (CR) relay networks is studied, with some important factors, including the outage probability, the bit error ratio (BER), and the average channel capacity being analyzed. Different from the conventional relay selection schemes, the impact of spectrum sensing process as well as the spectrum utilization efficiency of primary users on the performance of DF-based CR relaying networks has been taken into consideration. In particular, the exact closed-form expressions for the figures of merit such as outage probability, BER, and average channel capacity over independent and identically distributed (i.i.d.) Rayleigh fading channels, have been derived in this paper. The validity of the proposed analysis is proven by simulation, which showed that the numerical results are consistent with the theoretical analysis in terms of the outage probability, the BER and the average channel capacity. It is also shown that the full spatial diversity order can always be obtained at the signal-to-noise ratio (SNR) range of [0dB, 15dB] in the presence of multiple potential relays.

Unlimited Cooperative Sensing with Energy Detection for Cognitive Radio

  • Bae, Sunghwan;Kim, Hongseok
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.172-182
    • /
    • 2014
  • In this paper, we investigate the fundamental performance limits of the cooperative sensing using energy detection by considering the unlimited number of sensing nodes. Although a lot of cognitive radio research so far proposed various uses of energy detection because of its simplicity, the performance limits of energy detection have not been studied when a large number of sensing nodes exist. First, we show that when the sensing nodes see the independent and identically distributed channel conditions, then as the number of sensing nodes N goes to infinity, the OR rule of hard decision achieves zero of false alarm Pf for any given target probability of detection $\bar{P_d}$ irrespective of the non-zero received primary user signal to noise ratio ${\gamma}$. Second, we show that under the same condition, when the AND rule of hard decision is used, there exists a lower bound of $P_f$. Interestingly, however, for given $\bar{P_d}$, $P_f$ goes to 1 as N goes to infinity. Third, we show that when the soft decision is used, there exists a way of achieving 100% utilization of secondary user, i.e., the sensing time overhead ratio goes to zero so does $P_f$.We verify our analyses by performing extensive simulations of the proposed unlimited cooperative sensing. Finally, we suggest a way of incorporating the unlimited cooperative sensing into a practical cellular system such as long term evolutionadvanced by exploiting the existing frame structure of absolute blank subframe to implement the in-band sensing.

Implementation of the automatic switching device for the voice communications between heterogeneous devices (이종 기기 간 음성통신을 위한 자동전환장치의 구현)

  • Lew, Chang-Guk;Lee, Bae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.12
    • /
    • pp.1321-1328
    • /
    • 2015
  • A radio is a half-duplex voice communication method using the PTT(: Push To Talk), occupy a single line calls during transmission. As an interface between the telephone and the radio, UHF and VHF, for voice communication between the different heterogeneous devices, A device automatically switches between the two devices is required. Therefore, in accordance with the performance of the voice switching apparatus for detecting a voice to be transmitted from an input signal, loss of the audio signal to be transmitted is subjected to Significant influence. Conventional method has the problem responding to noise by setting the level through simple means of amplitude of input signal, in other words, the energy level of the input signal. This paper, by using the audio signal processing techniques, this discriminated what the voice is among the input signal and substantiated a device for the automatic voice transmission between heterogeneous devices. With this proposal, I was confirmed of improvement of performance in the automatic voice switching device, could perform loss-less transmission of voice between heterogeneous devices.

Implementation and Performance Analysis of Multi-GNSS Signal Collection System using Single USRP

  • Park, Kwi Woo;Choi, Yun Sub;Lee, Min Joon;Lee, Sang Jeong;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • In this paper, a system that can collect GPS L1 C/A, GLONASS G1, and BDS B1I signals with single front-end receiver was implemented using a universal software radio peripheral (USRP) and its performance was verified. To acquire the global navigation satellite system signals, hardware was configured using USRP, antenna, external low-noise amplifier, and external oscillator. In addition, a value of optimum local oscillator frequency was selected to sample signals from three systems with L1-band with a low sampling rate as much as possible. The comparison result of C/N0 between the signal collection system using the proposed method and commercial receiver using double front-end showed that the proposed system had 0.7 ~ 0.8dB higher than that of commercial receiver for GPS L1 C/A signals and 1 ~ 2 dB lower than that of commercial receiver for GLONASS G1 and BDS B1I. Through the above results, it was verified that signals collected using the three systems with a single USRP had no significant error with that of commercial receiver. In the future, it is expected that the proposed system will be combined with software-defined radio (SDR) and advanced to a receiver that has a re-configuration channel.

DGPS service analysis in the korean coastal ferry route (국내 연안 여객선 항로에서의 DGPS 서비스 분석)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2073-2078
    • /
    • 2014
  • Based on the DGPS radio wave measurement in the coast of the yellow-sea, south-sea and east-sea, the DGPS service regions in the korean coastal ferry route are analyzed in this paper. The impact of obstacles on the propagation due to the archipelago and island regions are measured and analyzed in the point of service region. The ocean-based DGPS reference stations provide the wide DGPS ocean service regions with signal strength more than $40dB{\mu}V/m$ and signal-to-noise ratio more than 10 dB. Based on the overlapping of the service regions between the DGPS reference stations, the DGPS services with good quality are provided in the coastal ferry route segments. In case of regions where the propagation obstacles are scattered, the increasingly good service can be provided under conditions of output power reinforcement and antenna efficiency enhancement.

Performance Analysis of Collaborative Wideband Sensing Scheme based on Energy Detection with User Selection for Cognitive Radio (에너지검출 기반 협력 광대역 센싱에서 사용자 선택에 따른 센싱 성능 분석)

  • Lee, Mi-Sun;Kim, Yoon-Hyun;Kim, Jin-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.72-77
    • /
    • 2011
  • Spectrum sensing is a critical functionality of CR network; it allow secondary user to detect spectral holes and to opportunistically use under-utilized frequency bands without causing harmful interference to primary use. Recently, wideband service has been increase for processing abundance of data traffic. So CR network needs a realizable implementation design of spectrum sensing for wideband. To get high resolution performance of wideband sensing must precede algorithm processing for reliability signal detection. By the way, the performance of spectrum sensing can be degraded due to fading and shadowing. In order to overcome this problem, we propose system model of wideband sensing scheme on energy detected collaborative technique. we divide wideband into narrowbands and use narrowbands to detect signal excepting some narrowbands including bad channel through the CSI. And we simulate and analyze in terms of detection probability with various SNR.

Joint Resource Allocation for Cellular and D2D Multicast Based on Cognitive Radio

  • Wu, Xiaolu;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.91-107
    • /
    • 2014
  • Device-to-device (D2D) communication is an excellent technology to improve the system capacity by sharing the spectrum resources of cellular networks. Multicast service is considered as an effective transmission mode for the future mobile social contact services. Therefore, multicast based on D2D technology can exactly improve the spectrum resource efficiency. How to apply D2D technology to support multicast service is a new issue. In this paper, a resource allocation scheme based on cognitive radio (CR) for D2D underlay multicast communication (CR-DUM) is proposed to improve system performance. In the cognitive cellular system, the D2D users as secondary users employing multicast service form a group and reuse the cellular resources to accomplish a multicast transmission. The proposed scheme includes two steps. First, a channel allocation rule aiming to reduce the interference from cellular networks to receivers in D2D multicast group is proposed. Next, to maximize the total system throughput under the condition of interference and noise impairment, we formulate an optimal transmission power allocation jointly for the cellular and D2D multicast communications. Based on the channel allocation, optimal power solution is in a closed form and achieved by searching from a finite set and the interference between cellular and D2D multicast communication is coordinated. The simulation results show that the proposed method can not only ensure the quality of services (QoS), but also improve the system throughput.