• Title/Summary/Keyword: radio frequency (RF) transceiver

Search Result 44, Processing Time 0.02 seconds

Design and Implementation of 5G mmWave LTE-TDD HD Video Streaming System for USRP RIO SDR (USRP RIO SDR을 이용한 5G 밀리미터파 LTE-TDD HD 비디오 스트리밍 시스템 설계 및 구현)

  • Gwag, Gyoung-Hun;Shin, Bong-Deug;Park, Dong-Wook;Eo, Yun-Seong;Oh, Hyuk-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.445-453
    • /
    • 2016
  • This paper presents the implementation and design of the 1T-1R wireless HD video streaming systems over 28 GHz mmWave frequency using 3GPP LTE-TDD standard on NI USRP RIO SDR platform. The baseband of the system uses USRP RIO that are stored in Xilinx Kintex-7 chip to implement LTE-TDD transceiver modem, the signal that are transceived from USRP RIO up or down converts to 28 GHz by using self-designed 28 GHz RF transceiver modules and it is finally communicated HD video data through self-designed $4{\times}8$ sub array antennas. It is that communication method between USRP RIO and Host PC use PCI express ${\times}4$ to minimize delay of data to transmit and receive. The implemented system show high error vector magnitude performance above 25.85 dBc and to transceive HD video in experiment environment anywhere.

Wireless operational modal analysis of a multi-span prestressed concrete bridge for structural identification

  • Whelan, Matthew J.;Gangone, Michael V.;Janoyan, Kerop D.;Hoult, Neil A.;Middleton, Campbell R.;Soga, Kenichi
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.579-593
    • /
    • 2010
  • Low-power radio frequency (RF) chip transceiver technology and the associated structural health monitoring platforms have matured recently to enable high-rate, lossless transmission of measurement data across large-scale sensor networks. The intrinsic value of these advanced capabilities is the allowance for high-quality, rapid operational modal analysis of in-service structures using distributed accelerometers to experimentally characterize the dynamic response. From the analysis afforded through these dynamic data sets, structural identification techniques can then be utilized to develop a well calibrated finite element (FE) model of the structure for baseline development, extended analytical structural evaluation, and load response assessment. This paper presents a case study in which operational modal analysis is performed on a three-span prestressed reinforced concrete bridge using a wireless sensor network. The low-power wireless platform deployed supported a high-rate, lossless transmission protocol enabling real-time remote acquisition of the vibration response as recorded by twenty-nine accelerometers at a 256 Sps sampling rate. Several instrumentation layouts were utilized to assess the global multi-span response using a stationary sensor array as well as the spatially refined response of a single span using roving sensors and reference-based techniques. Subsequent structural identification using FE modeling and iterative updating through comparison with the experimental analysis is then documented to demonstrate the inherent value in dynamic response measurement across structural systems using high-rate wireless sensor networks.

Design and Implementation of Factory Equipment Monitoring System using Grid-based Key Pre-Distribution (그리드 기반 키 선분배 방식을 사용하는 공장 설비 모니터링 시스템 설계 및 구현)

  • CHO, YANGHUI;PARK, JAEPYO;YANG, SEUNGMIN
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.51-56
    • /
    • 2016
  • In this paper, we propose an Arduino-based plant monitoring system. The proposed system is based on the Arduino platform, using an environmental sensor and a pressure sensor for measuring temperature, humidity and illuminance in order to monitor the state of the environment and the facilities of the plant. Monitoring data are transmitted to a ZigBee coordinator connected to a server through a radio frequency transceiver. When using a pressure sensor and the environment sensor data stored on the host server, checking the pressure in the environment of the plant and equipment is intended to report any alarm status to the administrator. Using a grid line-based key distribution scheme, the authentication node dynamically generates a data key to protect the monitoring information. Applying a ZigBee wireless sensor network does not require additional wiring for the actual implementation of a plant monitoring system. Possible working-environment monitoring of an efficient plant can help analyze the cause of any failure by backtracking the working environment when a failure occurs. In addition, it is easy to expand or add a sensor function using the Arduino platform and an expansion board.

A Study on the Technology Development of User-based Home Automation Service (사용자 위치기반 홈오토메이션 서비스 기술 개발에 관한 연구)

  • Lee, Jung-Gi;Lee, Yeong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.327-332
    • /
    • 2017
  • As Internet of Things (IoT) technology advances, there is a growing demand for location-based services (LBSs) to identify users' mobility and identity. The initial LBS system was mainly used to measure position information by measuring the phase of a signal transmitted from a global positioning system (GPS) satellite or by measuring distance to a satellite by tracking the code of a carrier signal. However, the use of GPS satellites is ineffective, because it is difficult to receive satellite signals indoors. Therefore, research on wireless communications systems like ultra-wide band (UWB), radio frequency identification (RFID), and ZigBee are being actively pursued for location recognition technology that can be utilized in an indoor environment. In this paper, we propose an LBS system that includes the 2.45GHz band for chirp spread spectrum (CSS), and the 3.1-10.6GHz band and the 250-750MHz bands for UWB using the IEEE 802.15.4a standard for low power-based location recognition. As a result, we confirmed that the 2.45GHz Industrial, Scientific and Medical (ISM) band RF transceiver and the ranging function can be realized in the hardware and has 0dBm output power.