• Title/Summary/Keyword: radiator

Search Result 435, Processing Time 0.021 seconds

A Study on Resonance and Interference of a Cooling Fan Assembly by Using FEM (유한요소법을 이용한 쿨링팬의 진동 및 간섭에 관한 연구)

  • 정일호;송하종;박태원;김주용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.919-924
    • /
    • 2004
  • A CFA(Cooling Fan Assembly) is composed of a fan, motor and shroud, which is at the back of the automotive radiator. By forcing the wind to pass, the CFA controls the cooling performance of the radiator. The noise and vibration of the CFA may be primarily due to the resonance between the CFA and engine. The Interference among the fan, shroud and radiator by deformation is considered when the CFA is designed. In this paper, in order to analyze the structural vibration of the CFA for automobiles, a finite element model of the CFA is established by using a commercial FEM code. After the finite element modeling, the natural frequencies and the mode shapes are obtained from the FE analysis. The natural frequencies are obtained from the vibration test as well. Then, the results of the vibration test are compared with those of the FE analysis. The natural frequencies obtained by experiment have a great similarity to the results from FE model. We have confirmed the validity of the FE model and verify the structural safety for the resonance. The stress and displacements are obtained from FE analysis. We have confirmed the safety for the interference and failure.

  • PDF

Flow and Thermal Analyses for the Optimal Specification of Flat Tube at Radiator (라디에이터용 납작관의 최적형상 도출을 위한 열.유동해석)

  • Park, Kyoung-Woo;Pak, Hi-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1046-1055
    • /
    • 2000
  • The flow and thermal phenomena in flat tubes of radiator are analyzed numerically. To predict the characteristics of heat transfer and pressure drop, the flow analysis program for three-dimensional complex geometry is developed, which adopted an non-staggered grid system and Cartesian velocities as dependent variables of the momentum equations. Using the developed program, the effect of tube specifications on the heat transfer characteristics is investigated for various flat tubes. From this study, the following results are obtained; (1) For the same hydraulic diameter($D_h{\doteq}5.2$mm), the Nusselt numbers of three basic modeis(D, J, and H-model) are 8.71, 8.92, and 10.58, respectively, and the pressure drops of D-, J-, and H-model are predicted as $-3.08{\times}10^{-2}\;Pa,\;-3.12{\times}10^{-2}\;Pa,\;and\; -3.98{\times}10^{-2}$ Pa, (2) In case of the same flat tube specification, the fins must be brazed at upper tube surface because the heat is more vividly transferred. Therefore, it is found that the H- model is the most effective tube as a heat exchanger and these results are used as a fundamental data for the design of tube.

Optimized Design of Wide-Band Subarray Using a Genetic Algorithm (유전 알고리즘을 이용한 광대역 부배열 최적화 설계)

  • Kim, Doo-Soo;Lee, Dong-Koog;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.415-423
    • /
    • 2012
  • This paper specifies on optimized design of wide-band subarray using a Genetic Algorithm. First wide-band radiator was designed at triangle lattice of infinite array structure. It is the radiator of notch type that has a wide-band characteristic of ratio 2:1 between maximum and minimum frequency satisfying active reflection coefficient under -10 dB at boresight. And a Genetic Algorithm was applied to optimize subarray partition of antenna consisting of 1,100 array elements. It was confirmed that an optimized subarray antenna has a 4.5-5.5 dB more improved maximum SLL (Side-Lobe Level) than regular subarray antenna.

Effect of $MnO_2$ Additives on the Thermal Properties of Infrared Radiator of Cordierite System Fabricated by Slurry Casting Method (주입성형법으로 제조된 Cordierite계 적외선 방사체의 열적특성에 미치는 $MnO_2$의 영향)

  • 신용덕
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.769-776
    • /
    • 1995
  • Infrared radiators of a cordierite system [cordierite (2MgO.2Al2O3.5SiO2)+30wt% clay+X wt% MnO2 (X=0, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5)] were manufactured by a slurry casting method. Thermal and physical properties of these infrared radiators were studied by the measurement of spectra emissivity, thermal expansion coefficient and apparent density, SEM and EPMA analyses were also carried out. The thermal expansion coefficient and apparent density were decreased with increasing amouonts of MnO2 additives. On the other hand, the spectral emissivity was increased in the wavelength below 4.5${\mu}{\textrm}{m}$. Also, infrared radiators of the cordierite system, of which the spectral emisivity was 0.8, could be attainable in the wavelength above 4.5${\mu}{\textrm}{m}$. The infrared radiator of the cordierite system with 2.0wt% MnO2, of which the spectral emissivity was approximately 1.0, could be attainable in the wavelength between 4.5${\mu}{\textrm}{m}$ and 8${\mu}{\textrm}{m}$. The spectral emissivity of the specimen containing 2.0wt% MnO2 was higher than others in the wavelength between 8${\mu}{\textrm}{m}$ and 14${\mu}{\textrm}{m}$.

  • PDF

An Experimental Study on the Heat Dissipation Characteristics of the Natural Convection Type Radiator by using the PCMs (PCM물질을 적용한 자연대류형 방열기의 방열특성에 관한 실험적 연구)

  • Sung, Dae-Hoon;Kim, Min-Jun;Kim, Joung-Ha;Yun, Jae-Ho;Kim, Woo-Seung;Peck, Jong-Hyeon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1155-1160
    • /
    • 2008
  • In the present study investigated the heat dissipation characteristics of the natural convection type radiator by using the latent heat from a solid-liquid PCM(Phase Change Material). Total radiator volume size is $423{\times}295{\times}83\;mm$ and PCM tank size is $398{\times}270{\times}26\;mm$. The objective was elapsed time lower than maximum operating temperature. Experimental condition, in order to study the effects of the phase-change phenomenon, carried out the various mass flow rate, input electric power, and heat of fusion temperature of two type PCMs. For the above experimental conditions, the cooling performance by using the latent heat showed that heat absorption rate performs for about 3 hours from using PCM $38^{\circ}C$. However, cooling performance by using PCM $50^{\circ}C$ showed higher than surface temperature of heater block because of heat of fusion.

  • PDF

Computer Simulation of an Automotive Engine Cooling System (자동차 엔진 냉각시스템의 컴퓨터 시뮬레이션)

  • 원성필;윤종갑
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.58-67
    • /
    • 2003
  • An automotive engine cooling system is closely related with overall engine performances, such as reduction of fuel consumption, decrease of air pollution, and increase of engine life. Because of complex reaction between each component, the direct experiment, using a vehicle, takes high cost, long time, and slow response to the system change. Therefore, a computer simulation would provide the designer with an inexpensive and effective tool for design, development, and optimization of the engine cooling system over a wide range of operating conditions. In this work, it has been predicted the thermal performance of the engine cooling system in cases of stationary mode, constant speed mode, and city-drive mode by mathematical modelling of each component and numerical analysis. The components are engine, radiator, heater, thermostat, water pump, and cooling fans. Since the engine model is the most important, that is divided into eight sub-sections. The volume mean temperature of eight sub-sections are simultaneously calculated at a time. For detail calculation, the radiator and heater are also divided into many sub-sections like control volumes in finite difference method. Each sub-section is assumed to consist of three parts, coolant, tube with fin, and air. Hence it has been developed the simulation program that can be used in case of design and system configuration changes. The overall performance results obtained by the program were desirable and the time-traced tendencies of the results agreed fairly well with those of actual situations.

Wideband Double-Radiator Circular Disc Annular Monopole Antenna

  • Afoakwa, Samuel;Diawuo, Henry Abu;Jung, Young-Bae
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.4
    • /
    • pp.252-257
    • /
    • 2018
  • A wideband double radiator circular disc annular monopole antenna is proposed is this work. The radiators are etched on the surfaces of two Taconic TLY-5 substrates with a circular hole cut out of each of the radiators initially at the centers of the radiators with subsequent downward displacement of the holes. The antenna is designed with a two-step feeding transformer system for impedance matching between the input power source supplied by a $50-{\Omega}$ SMA connector and the monopole radiators. The transformer system improves the bandwidth performance at higher frequencies. The proposed antenna achieves a wideband having the capability of working between 0.645 and 18.775 GHz, corresponding to a -10 dB bandwidth of 186.7% with gain ranging from 0.95 to 8.26 dBi. In comparison to other metal disc planar monopole antennas, the proposed antenna has a small total size width due to the size of the ground plane, which has a diameter 100 mm. The frequency range of the antenna provides applications in global positioning systems, mobile communications, ultra-wideband short distance communications, and wireless computer networks.

Design of a Internal Loop Antenna for Multi-band Mobile Handset Applications (다중 대역 이동 통신 단말기용 내장형 루프 안테나 설계)

  • Lee Young-Joong;Lee Jin-Sung;Jung Byungwoon;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.917-925
    • /
    • 2005
  • In this paper, the quad-band antenna for mobile handsets is proposed and developed. The operating frequency bands include GSM(880 MHz${\~}$960 MHz), GPS(1,575 MHz$\pm$10 MHz), DCS(1,710 MHz${\~}$l,880MHz), and PCS(1,850 MHz${\~}$l,990 MHz). The proposed antenna consists of a feed line, a shorting post, and a radiating element of the feed loop. The multi-band operation is achieved by using the fundamental and higher resonant modes of the radiating element. Based on analysis of the current distribution on the radiator, the resonant frequency of each mode can be adjusted by adding the different sizes of slots on the radiator. The radiator of the feed loop is designed to be symmetrical so that the energy is symmetrically distributed on the radiator, which results in omni-directional radiation pattern. The ground plane under the radiator is removed in order to improve the bandwidth. The measured impedance bandwidths are $10.1\%$ in GSM band(VSWR<2.5), $26.8\%$ in GPS band, and DCS/US-PCS bands(VSWR<2.5), respectively. The maximum gains on the H-plane of the fabricated antenna are measured about -0.37 dBi${\~}$2.55 dBi for all operating frequency bands.

A Study on the Characteristic of Airborne Lead Particle Size by Industry (업종별 공기중 납입자의 입경별 분포특성에 관한 조사 연구)

  • Park, Dong Wook;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.160-171
    • /
    • 1995
  • The size characteristics of lead particle which is one of the important factors associated with absorption of lead were ignored in establishing lead standard. This study was conducted to investigate distribution of lead particles by operation of industry. Aerodynamic Mass Median Diameters (MMD) of airborne lead particles in the battery and litharge manufacturing industry were $14.1{\mu}m$ and $15.1{\mu}m$, respectively. There was no significant difference between those two values(p>0.05). However, the diameters in radiator manufacturing and secondary smelting industry were $1.3{\mu}m$, $4.9{\mu}m$, respectively. Those were significantly smaller than the particle sizes in other industries(p<0.05). Total lead concentrations in the secondary smelting industry were higher than those in the battery and litharge manufacturing industry. Total lead concentrations in other industries except radiator manufacturing industry exceeded the standard of $50{\mu}g/m^3$. Only radiator manufacturing industry indicated lead concentrations significantly lower than those in other industries(p<0.05). Concentrations of lead particles smaller than $1{\mu}m$ defined as respirable fraction by OSHA's CPA model assumption were $72.4{\mu}g/m^3$ in the secondary smelting industry, exceeding $50{\mu}g/m^3$. The relationship of concentrations between total lead and lead of particles smaller than $1{\mu}m$ was log Y = 0.46 logX + 0.06(n=119, $r^2=0.44$, p=0.0001). Relationship of respirable lead concentrations between OSHA and ACGIH was significantly detected in the litharge and battery manufacturing industry(p=0.0001), but was not significant in the radiator(p=0.2720) and secondary smelting manufacturing industry(p=0.2394). As MMDs of lead particles generated in industry were small, difference of respirable lead concentration between OSHA and ACGIH became smaller. There was a significant difference between concentrations respirable lead defined by two organizations such as OSHA and ACGIH in the battery and litharge manufacturing industry. Average concentration of respirable lead by ACGIH definition was 43.3 % of total lead in secondary smelting and 48.9 % in radiator manufacturing industry, and lower fractions were indicated in battery and litharge manufacturing industry. Relationships of total lead with IPM, TPM, and RPM were significant respectively(p=0.0001) and lead concentrations by particle size could be estimated using this relationship. Linear regression equation between total lead concentration(X) and ACGIH-RPM concentration(Y) was log Y = 0.76 log X - 0.40($r^2=0.89$, p=0.0001).

  • PDF

Establishment of the Monoenergetic Fluorescent X-ray Radiation Fields (교정용 단일에너지 형광 X-선장의 제작)

  • Kim, Jang-Lyul;Kim, Bong-Hwan;Chang, Si-Young;Lee, Jae-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.1
    • /
    • pp.33-47
    • /
    • 1998
  • Using a combination of an X-ray generator Installed in radiation calibration laboratory of Korea Atomic Energy Research Institute (KAERI) and a series of 8 radiators and filters described in ISO-4037, monoenergetic fluorescent X-rays from 8.6 keV to 75 keV were produced. This fluorescent X-rays generated by primary X-rays from radiator were discriminated $K_{\beta}$ lines with the aid of filter material and the only $K_{\alpha}$ X-rays were analyzed with the high purity Ge detector and portable MCA. The air kerma rates were measured with the 35 co ionization chamber and compared with the calculational results, and the beam uniformity and the scattered effects of radiation fields were also measured. The beam purities were more than 90 % for the energy range of 8.6 keV to 75 keV and the air kerma rates were from 1.91 mGy/h (radiator : Au, filter : W) to 54.2 mGy (radiator : Mo, filter : Zr) at 43 cm from center of the radiator. The effective area of beam at the measurement point of air kerma rates was 12 cm ${\times}$ 12 cm and the influence of scattered radiation was less than 3 %. The fluorescent X-rays established in this study could be used for the determination of energy response of the radiation measurement devices and the personal dosemeters in low photon energy regions.

  • PDF