• Title/Summary/Keyword: radiation-induced hydrocarbon

Search Result 9, Processing Time 0.027 seconds

Ginsenoside Rb1 Inhibits Doxorubicin-Triggered H9C2 Cell Apoptosis via Aryl Hydrocarbon Receptor

  • Zhang, Yaxin;Wang, Yuguang;Ma, Zengchun;Liang, Qiande;Tang, Xianglin;Tan, Hongling;Xiao, Chengrong;Gao, Yue
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.202-212
    • /
    • 2017
  • Doxorubicin (DOX) is a highly effective chemotherapeutic agent; however, the dose-dependent cardiotoxicity associated with DOX significantly limits its clinical application. In the present study, we investigated whether Rb1 could prevent DOX-induced apoptosis in H9C2 cells via aryl hydrocarbon receptor (AhR). H9C2 cells were treated with various concentrations ($-{\mu}M$) of Rb1. AhR, CYP1A protein and mRNA expression were quantified with Western blot and real-time PCR analyses. We also evaluated the expression levels of caspase-3 to assess the anti-apoptotic effects of Rb1. Our results showed that Rb1 attenuated DOX-induced cardiomyocytes injury and apoptosis and reduced caspase-3 and caspase-8, but not caspase-9 activity in DOX-treated H9C2 cells. Meanwhile, pre-treatment with Rb1 decreased the expression of caspase-3 and PARP in the protein levels, with no effects on cytochrome c, Bax, and Bcl-2 in DOX-stimulated cells. Rb1 markedly decreased the CYP1A1 and CYP1A2 expression induced by DOX. Furthermore, transfection with AhR siRNA or pre-treatment with AhR antagonist CH-223191 significantly inhibited the ability of Rb1 to decrease the induction of CYP1A, as well as caspase-3 protein levels following stimulation with DOX. In conclusion, these findings indicate that AhR plays an important role in the protection of Ginsenoside Rb1 against DOX-triggered apoptosis of H9C2 cells.

The Microwave-Assisted Extraction of Fats from Irradiated Meat Products for the Detection of Radiation-Induced Hydrocarbons

  • Kwon, Joong-Ho;Kausar, Tusneem;Lee, Jeong-Eun;Kim, Hyun-Ku;Ahn, Dong-U
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.150-153
    • /
    • 2007
  • Hydrocarbons have been successfully used as a chemical marker in order to identify irradiated from non-irradiated foods. The method for determining hydrocarbons consists of extraction of fats, followed by separation of hydrocarbons by florisil column chromatography, and then identification of hydrocarbons by GC/MS. Currently, solvent extraction method for fats has certain limitations with regard to extraction time and solvent consumption. Commercial hams and sausage were irradiated at 0 and 5 kGy, and the efficiency of microwave-assisted extraction (MAE) and conventional solvent extraction (CSE) methods on the extraction of radiation-induced hydrocarbons from the meat products was compared. Significant levels of hydrocarbons, mainly composed of 1,7-hexadecadien, 1,7,10-hexadecatriene, and 6,9-heptadecadiene, were detected in the extracts from irradiated hams and sausages by both CSE and MAE methods. Both methods were acceptable in extracting hydrocarbons from samples, but MAE method required apparently reduced amounts of solvent from 150 (CSE) to 50 mL and reduced extraction time from 23 (CSE) to 5 min.

Multistep Identification of γ-Irradiated Boiled-Dried Anchovies by Analysis of Thermoluminescence, Electron Spin Resonance, Hydrocarbon and 2-Alkylcyclobutanone (건멸치의 방사선 조사 확인을 위한 열발광, 전자스핀공명, Hydrocarbon 및 2-Alkylcyclobutanone의 다중분석)

  • 노정은;권중호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.8-14
    • /
    • 2003
  • Multistep detection was peformed to identify irradiated dried anchovy. In thermoluminescence (TL) analysis, non-irradiated samples represented a lower peak at about 28$0^{\circ}C$, but irradiated samples showed a higher peak at around 20$0^{\circ}C$. The normalization with a re-irradiation step at 1 kGy could verify the identification results. Electron spin resonance (ESR) spectroscopy for bones separated from irradiated anchovy revealed specific signals (g=2.002,1.998) derived from a hydroxyapatite radical, which intensities were in proportion to the irradiation doses and still detectable even after 6 months of storage at -2$0^{\circ}C$. Six kinds of hydrocarbons (HC) were observed in dried anchovy samples and 1,7-hexadecadiene and 1-hexadecene were only detected in irradiated anchovy at 1 kGy or more. Also among 3 kinds of radiation-induced 2-alkylcyclobutanones (2-ACB) observed, 2-dodecylcy-clobutanone and 2-tetradecylcyclobutanone were unique in irradiated anchovy. As a result, the concentration of radiation-induced HCs and 2-ACBs were dependent on the irradiation dose and detectable after 6 months of storage. However, TL and ESR analyses were found simpler than the other methods for identification of irradiated boiled-dried anchovy.

Physicochemical Identification Characteristics of Irradiated Brown Rice, Soybean and Sesame Seeds during Storage (방사선 조사된 현미, 대두 및 참깨의 저장기간에 따른 방사선 조사여부의 이화학적 판별 특성)

  • Lee, Jeong-Eun;Ahn, Jae-Jun;Kwon, Joong-Ho
    • Food Science and Preservation
    • /
    • v.19 no.1
    • /
    • pp.37-46
    • /
    • 2012
  • The identification characteristics of irradiated (0.5, 1, 2, and 4 kGy) brown rice, soybean, and sesame seeds were investigated using photostimulated luminescence (PSL), thermoluminescence (TL), and hydrocarbon analysis during 12-month storage. PSL-based screening was possible for the irradiated soybean and sesame seed samples up to 6 and 12 months, respectively. The TL glow curve shape, intensity, and ratio enabled the clear dose-dependent discrimination of all the non-irradiated and irradiated samples. The TL intensity decreased during storage, but the TL glow curve did not change qualitatively, which provided enough information to confirm the irradiation treatment of the samples over the storage period. Radiation-induced hydrocarbons were found in all the irradiated samples even at 0.5 kGy, throughout the storage period. 8-Heptadecene ($C_{17:1}$) and 1,7-hexadecadiene ($C_{16:2}$) originated from oleic acid, and 6,9-heptadecadiene ($C_{17:2}$) and 1,7,10-hexadecatriene ($C_{16:3}$) originated from linoleic acid, can be used as radiation-induced markers in identifying irradiated brown rice, soybean, and sesame seeds.

Comparison of Radiation-Induced Hydrocarbons in Dried Anchovies by Electron-Beam Irradiation (전자선 조사한 건조 멸치류에서 유도된 지방분해산물의 분석)

  • Hong, Young Shin;Kim, Kyong Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.12
    • /
    • pp.1889-1895
    • /
    • 2014
  • Radiation-induced hydrocarbon contents of dried anchovy, jiri anchovy, and large-eyed herring were evaluated following electron-beam irradiation at doses of 1, 3, 5, 7, and 10 kGy. GC/MS identification of the induced hydrocarbons by irradiation was conducted after lipid separation by soxtec, followed by florosil column chromatography. 1-Tetradecene ($C_{14:1}$) and pentadecane ($C_{15:0}$) derived from palmitic acid, 1-hexadecene ($C_{16:1}$) and heptadecane ($C_{17:0}$) from stearic acid, and 8-heptadecene ($C_{17:1}$) and 1,7-hexadecadiene ($C_{16:2}$) from oleic acid were the major induced hydrocarbons in irradiated dried anchovy, jiri anchovy, and large-eyed herring samples. At the same irradiation dose, concentration of induced hydrocarbons differed from fatty acid composition and increased in accordance with radiation dose level. Radiation-induced hydrocarbons, such as 1-tetradecene ($C_{14:1}$), 1-hexadecene ($C_{16:2}$), 8-heptadecene ($C_{17:1}$), and 1,7-hexadecadiene ($C_{16:2}$), were confirmed as irradiation marker compounds. Therefore, these marker compounds could be used to distinguish electron-beam irradiated dried anchovy, jiri anchovy, and large-eyed herring from non-irradiated ones.

Analysis of radiation induced hydrocarbons by electron-beam irradiation in dried squid (Todarodes pacificus) and octopus (Paroctopus dofleini) (전자선 조사한 건조된 오징어와 문어에서 유도된 지방분해산물의 분석)

  • Hong, Young Shin;Ryu, Keun Young;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.21 no.3
    • /
    • pp.381-387
    • /
    • 2014
  • Food irradiation is one of the successful modern techniques used to preserve food. However, it needs very careful control. Detection of irradiated food is of prime importance to facilitate global trade and consumer assurance, choice, and protection. This study was performed to evaluate the radiation-induced hydrocarbon content of dried squid and octopus by e-beam irradiation. The samples were collected from supermarkets all over South Korea and irradiated with an e-beam at 0, 1, 3, 5, 7, and 10 kGy doses. Lipids were extracted with soxhelt, and the hydrocarbons induced with irradiation were separated via solid phase extraction (SPE) and identified via gas chromatography mass spectrometry (GC/MS). The major induced hydrocarbons in the irradiated dried squid and octopus were 1-tetradecene and pentadecane derived from palmitic acid and 1-hexadecene and heptadecane from stearic acid. The concentration of hydrocarbons differed from the composition of the fatty acid at the same radiation and increased according to the level of the radiation dose. The hydrocarbons induced by e-beam irradiation, including 1-tetradecene, 1-hexadecene, and heptadecane, were confirmed to have been the irradiation marker compounds. Therefore, they can be used to distinguish the e-beam-irradiated dried squid and octopus from the non-irradiated ones.

Optimization of Pre-Treatment Conditions for Hydrocarbons Detection from Irradiated Soybean Using Microwave-Assiated Extraction (마이크로파 추출법을 이용한 방사선 조사 대두의 Hydrocarbons 분석 전처리조건 최적화)

  • Lee, Jeong-Eun;Kwon, Joong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.612-621
    • /
    • 2013
  • Microwave-assisted extraction (MAE), which is known as less time and less solvent than current extraction methods, was applied to hydrocarbons extraction from irradiated soybean. Among the transported agricultural products, soybean was selected as representative samples for possible application of irradiated treatment and identification of radiation-induced markers. Using 4 kGy-irradiated soybean, different microwave extraction conditions (extraction time and microwave power) were applied and the changes in hydrocarbon concentrations were monitored. The predicted optimum extracted condition for hydrocarbon analysis of soybean was found to be microwave extraction with a microwave power of 97 W and extraction time of 2.2 min. This extraction time was significantly lower compared to the common extraction time of 12-24hr.

Quantitative Comparison of Radiation-induced Hydrocarbons from Irradiated Beef, Pork and Chicken (쇠고기, 돼지고기, 닭고기로부터 방사선 조사에 의해 유도된 Hydrocarbon 류의 정량적 비교 분석)

  • Kim, Kyong-Su;Kim, Eun-Ah;Lee, Hae-Jung;Yang, Jae-Seung;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.301-307
    • /
    • 1999
  • When fats are irradiated, hydrocarbons contained one or two fewer carbon atoms are formed from the parent fatty acids. A method to detect radiation-induced hydrocarbons consists of the extraction of fat from beef, pork and chicken, separation of hydrocarbons with a florisil column and identification of GC/MS methods. When beef, pork and chicken were irradiated, pentadecane, 1-tetradecene, heptadecane, 1-hexadecene, 8-heptadecene, 1,7-hexadecadiene, 6,9-heptadecadiene and 1,7,10-hexadecatriene were formed from palmitic, stearic, oleic and linoleic acids. Concentrations of the produced hydrocarbons tended to increase linearly with the dose levels of irradiation. Concentrations of hydrocarbons produced by ${\gamma}-irradiation$ depended upon the composition of fatty acids in beef, pork and chicken. The major hydrocarbons in irradiated beef, pork and chicken were 1,7-hexadecadiene and 8-heptadecene originating from oleic acid. 1,7-Hexadecadiene was the highest amount in irradiated beef, pork and chicken.

  • PDF

Identification Characteristics of Irradiated Dried Red Pepper during Storage by the Analysis of Electron Spin Resonance and Hydrocarbons (전자스핀공명 및 Hydrocarbon 분석에 의한 방사선처리 건고추의 저장 중 검지특성)

  • Kim, Byeong-Keun;Lee, Jung-Eun;Kausar, Tusneem;Kim, Dong-Ho;Yang, Jae-Seung;Byun, Myung-Woo;Kwon, Joong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1522-1528
    • /
    • 2004
  • Electron spin resonance (ESR) and hydrocarbon characteristics were analyzed to establish identification conditions for irradiated dried red pepper. The ESR spectroscopy for 4 different parts (powder, pericarp, seed, stem) of the samples showed that irradiated samples signaled (g=2.024, 2.006, 1.987) a pair of peaks from a cellulose radical at intervals of 6 mT, which were not found on the non-irradiated samples. The ESR signals increased in directly proportion to the irradiation doses, which were still detectable after 12 weeks of storage at room temperature. The GC-MS analysis of hydrocarbons after fat extraction and separation by florisil column chromatography revealed that hydrocarbons, such as 1-tetradecene (14:1), 1,7,10-hexadecatriene (16:3), 1,7-hexadecadiene (16:2), 1-hexadecene (16:1), 6,9-heptadecadiene (17:2), and 8-heptadecene (17:1), were detected only from the irradiated samples immediately after irradiation and 8 months of storage. They linearly increased with the dose of irradiation, suggesting them as radiation-induced markers for irradiated dried red pepper.