• Title/Summary/Keyword: radiation safety equipment

Search Result 135, Processing Time 0.021 seconds

Radiation safety management for diagnostic radiation generators and employees in animal hospitals in Korea (동물병원의 진단용 방사선 발생장치 및 방사선종사자 안전관리 실태 조사)

  • An, Hyo-Jin;Kim, Chung-Hyun;Kwon, Young-Jin;Kim, Don-Hwan;Wee, Sung-Hwan;Moon, Jin-San
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.3
    • /
    • pp.151-157
    • /
    • 2014
  • A nationwide survey on radiation safety management in Korean animal hospitals was conducted. By 2013, 53 radiation generators were registered as veterinary medical devices (41 X-ray generators and 12 computed tomography scanners). Additionally there were six approved laboratories for radiation equipment and protection facility, and five approved laboratories for radiation exposure of employees, respectively. By March 2013, 2,030 out of 3,829 animal hospitals operated radiation-generating devices. Among these devices, 389 (19.2%) out of 2,030 were not labeled with the model name and 746 (36.7%) were not labeled with production dates. Thus, most veterinary X-ray generators were outdated (42.6%) and needed replacements. When periodic inspections of 2,018 animal hospitals were performed after revision of the Veterinarians Act in 2011, the hospitals were found to be equipped with appropriate radiation generators and protection facilities. Among 2,545 employees exposed to radiation at the hospitals, 93.9% were veterinarians, 4.3% were animal nurse technicians, and 18% held other positions. Among 169 employees supervised by administrators, none of those had a weekly maximum operating load that exceeded $10mA{\cdot}min$. This study suggests that the radiation safety management system of animal hospitals was general good.

The awareness and performance towards the dental radiation protection behaviors in Busan and Gyeongnam (부산·경남 일부지역의 치과방사선 인식도와 수행도에 따른 치과방사선 방어행위)

  • Na, Hyeon-Hui;Jin, Hye-Jung;Lee, Min-Kyung
    • Journal of Korean society of Dental Hygiene
    • /
    • v.14 no.5
    • /
    • pp.673-680
    • /
    • 2014
  • Objectives : The purpose of this study is to investigate the awareness and performance towards the dental radiation protection behaviors in dental institutions in Busan and Gyeongnam. Methods : Two hundred and one dental medical institutions in Busan and Gyeongnam participated in the survey from March 10 to April 4, 2014. The data were analyzed using SPSS 19.0 for ${\chi}^2$ test, t-test, ANOVA, and multiple regression analysis. Results : There were significant differences in the awareness and performance towards the radiation protection behaviors according to age, monthly income, and type of hospital(p<0.05). Protective equipment influenced on the awareness and performance of dental staff and patients(p<0.001). The important variables on dental radiation protection included protection facility and education of protective equipment. It is found the variable to affect the performance of dental radiation protection was protection facility, wearing of protective device staff and patients, education on RSM. Conclusions : These results can provide the basic data for the effective dental radiation safety management and improvement for the dental institutions.

A Study on Enacting the Radiologic Technologist Act for the Civil Right to Health in Korea (건강권과 방사선사법 제정에 관한 고찰)

  • Lim, Chang-Seon
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.313-320
    • /
    • 2007
  • There are the Medical Radiation Health and Safety Act(the Patient Radiation Health and Safety Act, the Radiologic Technologist Act), the Medical Laboratory Technologist Act, the Physical Therapy Practice Act, and the Dental Hygienist Act, etc in America. However, Korea has only one Act for a medical radiologic technologist(including radiation therapy technologist, nuclear medicine technologist), medical laboratory technologist, physical therapist, occupational therapy examiner, dental hygienist, and so on. It is the Medical Technologist Act. Therefore, the Medical Radiation Health and Safety Act for a radiologic technologist(including radiation therapy technologist, nuclear medicine technologist) has to be enacted independently in Korea. It is the purpose of this Act to provide for the appropriate certification of persons using radioactive materials, equipment emitting ionizing radiation on humans or performing medical imaging for diagnostic and therapeutic purposes. In Korea, the radiologic technologist is a "fusion technologist" who is a person other than a licensed practitioner as a radiographer, radiation therapist, nuclear medicine technologist, computed tomography technologist, magnetic resonance technologist, mammographer, sonographer, medical dosimetrist, quality management technologist, etc. This Act will have some provisions related to the definitions, reserved title, scope of practice, specialized technologist, application for licensure, radiologic technology council, renewal, continuing education, the radiation control advisory commission, etc. This Act will ensure that quality radiation therapy treatments are delivered and that quality diagnostic information is presented for interpretation, which will lead to accurate diagnosis, treatment and cure. Accurate diagnosis can be provided only when a personnel is properly educated in technique, equipment operation and radiation safety. In the end, this Act will protect the civil right to health. By regulating the personnel responsible for performing those procedures, this Act will mean improved care for patients-higher quality images, improved accuracy, and less exposure to radiation.

  • PDF

Analysis of the Spatial Dose Rates during Dental Panoramic Radiography (치과 파노라마 촬영에서 공간선량률 분석)

  • Ko, Jong-Kyung;Park, Myeong-Hwan;Kim, Yongmin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.509-516
    • /
    • 2016
  • A dental panoramic radiography which usually uses low level X-rays is subject to the Nuclear Safety Act when it is installed for the purpose of education. This paper measures radiation dose and spatial dose rate by usage and thereby aims to verify the effectiveness of radiation safety equipment and provide basic information for radiation safety of radiation workers and students. After glass dosimeter (GD-352M) is attached to direct exposure area, the teeth, and indirect exposure area, the eye lens and the thyroid, on the dental radiography head phantom, these exposure areas are measured. Then, after dividing the horizontal into a $45^{\circ}$, it is separated into seven directions which all includes 30, 60, 90, 120 cm distance. The paper shows that the spatial dose rate is the highest at 30 cm and declines as the distance increases. At 30 cm, the spatial dose rate around the starting area of rotation is $3,840{\mu}Sv/h$, which is four times higher than the lowest level $778{\mu}Sv/h$. Furthermore, the spatial dose rate was $408{\mu}Sv/h$ on average at the distance of 60 cm where radiation workers can be located. From a conservative point of view, It is possible to avoid needless exposure to radiation for the purpose of education. However, in case that an unintended exposure to radiation happens within a radiation controlled area, it is still necessary to educate radiation safety. But according to the current Medical Service Act, in medical institutions, even if they are not installed, the equipment such as interlock are obliged by the Nuclear Safety Law, considering that the spatial dose rate of the educational dental panoramic radiography room is low. It seems to be excessive regulation.

A study on anxiety about dental radiography among adults (성인의 치과 방사선 촬영에 대한 불안감에 관한 연구)

  • Lee, Kyeong-Hee;Kim, Eun-A;Baek, Ji-Hyeon;Heo, Su-Yeon;Jung, Eun-Seo
    • Journal of Korean society of Dental Hygiene
    • /
    • v.17 no.5
    • /
    • pp.721-733
    • /
    • 2017
  • Objectives: This study was conducted to help reduce the anxiety about dental radiation exposures of people and to provide a way to instill proper awareness of dental radiation. Methods: To fulfill the research aim, this study conducted a survey to 330 subjects who are 20 years old or over living in Seoul and Gyeonggi-do during the month of December 2016. The collected data were analyzed using frequency analysis, t-test, one-way ANOVA, Pearson's correlation coefficient and multiple regression analysis among others. Results: As a result of examining the correlation between the anxiety of dental radiography and the correlations between the variables showed that the knowledge of radiation knowledge and the need for radiography (r=0.186, p<0.01), thinking about shooting (r=0.137, p<0.05), and the effectiveness of wearing protective equipment (r=0.120, p<0.01), showing statistically significant differences. As a result of examining the factors influencing anxiety of dental radiography among adults, high awareness of the need for dental radiography (p<0.01), the more the idea of dental anxiety in dental radiography is radiography showed higher (p<0.01). Conclusions: It seems proper that adequate dental radiography requires adequate explanation about it to patients, wearing of protective equipment, and appropriate dental radiation safety education.

Guideline on Acceptance Test and Commissioning of High-Precision External Radiation Therapy Equipment

  • Kim, Juhye;Shin, Dong Oh;Choi, Sang Hyoun;Min, Soonki;Kwon, Nahye;Jung, Unjung;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.123-136
    • /
    • 2018
  • The complex dose distribution and dose transfer characteristics of intensity-modulated radiotherapy increase the importance of precise beam data measurement and review in the acceptance inspection and preparation stages. In this study, we propose a process map for the introduction and installation of high-precision radiotherapy devices and present items and guidelines for risk management at the acceptance test procedure (ATP) and commissioning stages. Based on the ATP of the Varian and Elekta linear accelerators, the ATP items were checked step by step and compared with the quality assurance (QA) test items of the AAPM TG-142 described for the medical accelerator QA. Based on the commissioning procedure, dose quality control protocol, and mechanical quality control protocol presented at international conferences, step-by-step check items and commissioning guidelines were derived. The risk management items at each stage were (1) 21 ionization chamber performance test items and 9 electrometer, cable, and connector inspection items related to the dosimetry system; (2) 34 mechanical and dose-checking items during ATP, 22 multileaf collimator (MLC) items, and 36 imaging system items; and (3) 28 items in the measurement preparation stage and 32 items in the measurement stage after commissioning. Because the items presented in these guidelines are limited in terms of special treatment, items and practitioners can be modified to reflect the clinical needs of the institution. During the system installation, it is recommended that at least two clinically qualified medical physicists (CQMP) perform a double check in compliance with the two-person rule. We expect that this result will be useful as a radiation safety management tool that can prevent radiation accidents at each stage during the introduction of radiotherapy and the system installation process.

Quality Control of Diagnostic X-ray Units for Animal Hospital (동물병원의 방사선발생장치 정도관리에 대한 연구)

  • Kim, Sang-Woo;Lee, Ji-Hoon;Park, Yei-Seul;Rhim, Jea-Dong;Seoung, Youl-Hun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.231-237
    • /
    • 2010
  • The purpose of this study was to investigate the actual conditions of radiation safety supervision in animal clinics using quality assurance (QA) and quality control (QC) of diagnostic X-ray units. The surveys for QA/QC, equipment condition, and safety supervision were carried out in 18 animal clinics randomly. The QA/QC included reproducibility of dose exposure, kVp, mAs, collimator accuracy test, collimator luminance test, X-ray view box luminance test, grounding system equipment test and external leakage current test. As a result, 44.44% of reproducibility of dose exposure was proper, 81. 25% of kVp test was good, and 100% of mAs test was appropriate. Also, 66.66% of collimator accuracy test was proper, 61.11% of collimator luminance test was good, 53.13% of X-ray view box luminance test was suitable. In addition, only 5.55% of grounding system equipment and ground resistance was proper, 63.64% of external leakage current test was appropriate in grounding system equipment test.

  • PDF

The regulatory system for imported-cargo radiation monitoring in Korea and a proposal for its improvement

  • Wo Suk Choi ;Tae Young Kong ;Hee Geun Kim;Eun Ji Lee ;Seong Jun Kim ;Jin Ho Son ;Chang Ju Song;Hwa Pyoung Kim;Cheol Ki Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • To protect people and the environment from environmental radiation, the Act on Protective Action Guidelines against Radiation in the Natural Environment was formulated in Korea in 2011. This law regulates matters related to radiation safety that can be encountered in life. In accordance with this law, radiation monitoring equipment is operated at major airports and ports across the country, ensuring radiation monitoring of imported cargo. Currently, six ministries conduct radiation monitoring of imported cargo: the Nuclear Safety and Security Commission; the Korea Customs Service; the Ministry of Food and Drug Safety; the Ministry of Environment; the Ministry of Agriculture, Food and Rural Affairs; and the Korea Forest Service. Each ministry designates the relevant cargo items for radiation monitoring. The objective of this study was to comprehensively review the Korean radiation monitoring system for imported cargo and identify the areas and scopes of improvement. This paper also proposes a new law and an integrated supervision plan, which involves establishing a dedicated department to enhance the efficiency and professionalism of the national radiation monitoring system for imported cargo. The review will contribute to the development of a more sophisticated national radiation monitoring system for imported cargo.

A Study on the Guarantee of Learning Rights of Radiology Students in Nuclear Safety Act (원자력안전법에 대한 방사선학과 학생들의 학습권 보장에 관한 연구)

  • Lee, Bo-Woo
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.159-164
    • /
    • 2022
  • The study developed a radiation dose measurement program in the radiology laboratory to measure how much exposure the students are exposed to during the radiology class, to request for the improvement and the revision of the current Nuclear Safety Act. The experimental program is shown in the following figure, and experiments were conducted to determine the degree of radiation exposure in the control room with a lead gown at a distance of 1 m, 2 m, and 1 m, and in a control room with a radiographic lead glass wall. The duration of the experiment was 3 months from April to June, when radiation imaging practice classes were conducted, and 128 hours of imaging practice per month were conducted. In order to find out the dose of radiation dose during radiology imaging practice class, the experiment was carried out from April to June for 3 months, and according to the program, the results of exposure dose were 0.34 mSv at 1 m distance, 0.01 mSv at shielding of lead gown at 1 m distance, 0.16 mSv at 2 m distance, and 0.01 mSv at control room with radiation lead glass wall. The exposure dose from the test results was much below the annual general public limit dose of 1 mSv. The restriction on the operation of the radiation equipment in the practice of the students is a regulation that infringes the right of students to learn, and amendments or exemptions of Nuclear Safety Act should be enacted to ensure that it does not violate the fundamental right to learn for students in radiology.

A study on Protector Performance Evaluation According to X-ray Scattering Distribution of Portable Radiation System (이동형 방사선 발생장치 차폐물 설치에 관한 연구)

  • Kim, Hyong-Gyun;Sung, Dong-Keon;Cho, Kyong-Mi;Kim, Sang-Beom;Kim, Jae-Young;Choi, Jun-Ho
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.85-92
    • /
    • 2009
  • This study, "The study about performance evaluations of mobile cover for X-ray's diffusion and distribution in mobile radiation" is based on the rules of mobile defense apparatus for radiation producer in 2006. To use the mobile cover for X-ray for diagnosis has been compulsory in common wards except operation rooms, emergency rooms and intensive care units. we have confirmed the effect in arbitrary shielding material after Qualitiy Control was carried out for accuracy in an experiment of mobile photographing equipment. The performance evaluation was conducted with the fabrics of selenium, 0.2 mmPb, 0.1 mmPb and aluminiums. Considering the result, we choosed 0.1 mmPb and attached cover to mobile photographing equipment. We have finished making the cover after drew up the draft to attach cover to mobile photographing equipment through the modeling and the structural analysis. the process of the study is that we assembled the manufactured structures and carried out the practical experiment to take the photograph after attaching the fabric of 0.1 mmPb to mobile photographing equipment. It is need of additional thesises hereafter that we compare the result between the part to improve for safety besides convenience in photographic experiment about clinical radiation and the effect of covering the diffusion in condition attached the cover.

  • PDF