• 제목/요약/키워드: radiation protection

검색결과 2,295건 처리시간 0.033초

The Japan Health Physics Society Guideline on Dose Monitoring for the Lens of the Eye

  • Yokoyama, Sumi;Tsujimura, Norio;Hashimoto, Makoto;Yoshitomi, Hiroshi;Kato, Masahiro;Kurosawa, Tadahiro;Tatsuzaki, Hideo;Sekiguchi, Hiroshi;Koguchi, Yasuhiro;Ono, Koji;Akiyoshi, Masahumi;Kunugita, Naoki;Natsuhori, Masahiro;Natsume, Yoshinori;Nabatame, Kuniaki;Kawashima, Tsunenori;Takagi, Shunji;Ohno, Kazuko;Iwai, Satoshi
    • Journal of Radiation Protection and Research
    • /
    • 제47권1호
    • /
    • pp.1-7
    • /
    • 2022
  • Background: In Japan, new regulations that revise the dose limit for the lens of the eye (hereafter the lens), operational quantities, and measurement positions for the lens dose were enforced in April 2021. Based on the international safety standards, national guidelines, the results of the Radiation Safety Research Promotion Fund of the Nuclear Regulation Authority, and other studies, the Working Group of Radiation Protection Standardization Committee, the Japan Health Physics Society (JHPS) developed a guideline for radiation dose monitoring for the lens. Materials and Methods: The Working Group of the JHPS discussed the criteria of non-uniform exposure and the management criteria set not to exceed the dose limit for the lens. Results and Discussion: In July 2020, the JHPS guideline was published. The guideline consists of three parts: main text, explanations, and 26 examples. In the questions, the corresponding answers were prepared, and specific examples were provided to enable similar cases to be addressed. Conclusion: With the development of the guideline on radiation dose monitoring of the lens, radiation managers and workers will be able to smoothly comply with revised regulations and optimize radiation protection.

가속기(加速器)를 이용(利用)한 암치료기술(癌治療技術) 현황(現況) (Recent Status of Cancer Treatment Using High Energy Radiotherapy Machine)

  • 유성열
    • Journal of Radiation Protection and Research
    • /
    • 제11권1호
    • /
    • pp.83-89
    • /
    • 1986
  • High energy radiation therapy using accelerator or radioioisotope teletherapy unit is now one of the most important modality in the field dealing with human malignant tumor. It's successful technology overcomes incurable disease to change into curable disease not only by the improvement of clinical technique but also by the development of radiation physics and biology. The author presented the principles of radiation therapy by means of basic knowledge of medicine. physics and biology, described the various ways to improve the result of radiation therapy, and reviewed recent status of radiotherapy field in Korea.

  • PDF

Cholesteric Liquid Crystals as Multi-Purpose Sensor Materials

  • Lisetski, L.N.
    • Journal of Radiation Protection and Research
    • /
    • 제30권1호
    • /
    • pp.27-30
    • /
    • 2005
  • New possibilities are discussed for cholesteric liquid crystals (CLC) as sensor materials for detection of ionizing radiation, biologically active UV radiation, and the presence of hazardous vapors in atmosphere. A distinguishing property of CLC-based detectors is their 'bioequivalence', i.e., mechanisms of their response to external factors essentially imitate the corresponding mechanisms of biological tissues. Such detectors can ensure sufficiently high sensitivity to make feasible their use as alarm indicators or in biophysical studies. Specific examples ate given of sensor compositions and their response characteristics.

국제방사선방호위원회와 방사선방호체계 (The ICRP and Its System of Radiological Protection)

  • 조건우
    • 한국환경보건학회지
    • /
    • 제50권1호
    • /
    • pp.1-5
    • /
    • 2024
  • International Commission on Radiological Protection (ICRP) is an independent international organization that advances the science of radiological protection for the public benefit, particularly by providing recommendations and guidance on all aspects of protection against ionizing radiation. The ICRP is a community of more than 380 globally-recognized experts in radiological protection science, policy, and practice from more than 50 countries. As of January 2024, the ICRP is comprised of a Main Commission, the Scientific Secretariat, four Standing Committees, and 30 Task Groups under the four committees. The ICRP has released well over one hundred publications on all aspects of radiological protection. Most address a particular area within radiological protection, but a handful of the publications, the so-called fundamental recommendations, describe the overall system of radiological protection. The system for radiological protection is based on the current understanding of the science of radiation exposure and its effects along with value judgements. The ICRP offers recommendations to regulatory and advisory agencies and provides advice to management and professional staff with responsibilities for radiological protection. Legislation in most countries adheres closely to ICRP recommendations. The International Atomic Energy Agency's (IAEA) International Basic Safety Standards are based heavily on ICRP recommendations. ICRP recommendations form the core of radiological protection standards, legislation, programs, and practice worldwide.

Measuring Thermo-luminescence Efficiency of TLD-2000 Detectors to Different Energy Photons

  • Xie, Wei-min;Chen, Bao-wei;Han, Yi;Yang, Zhong-Jian
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.179-183
    • /
    • 2016
  • Background: As an important detecting device, TLD is a widely used in the radiation monitoring. It is essential for us to study the property of detecting element. The aim of this study is to calculate the thermo-luminescence efficiency of TL elements. Materials and Methods: A batch of thermo-luminescence elements were irradiated by the filtered X-ray beams of average energies in the range 40-200 kVp, 662 keV $^{137}Cs$ gamma rays and then the amounts of lights were measured by the TL reader. The deposition energies in elements were calculated by theory formula and Monte Carlo simulation. The unit absorbed dose in elements by photons with different energies corresponding to the amounts of lights was calculated, which is called the thermo luminescent efficiency (${\eta}^{(E)}$). Because of the amounts of lights can be calculated by the absorbed dose in elements multiply ${\eta}^{(E)}$, the ${\eta}^{(E)}$ can be calculated by the experimental data (the amounts of lights) divided by absorbed dose. Results and Discussion: The deviation of simulation results compared with theoretical calculation results were less than 5%, so the absorbed dose in elements was calculated by simulation results in here. The change range of ${\eta}^{(E)}$ value, relative to 662 keV $^{137}Cs$ gamma rays, is about 30% in the energy range of 33 keV to 662 keV, is in accordance by the comparison with relevant foreign literatures. Conclusion: The ${\eta}^{(E)}$ values can be used for updating the amounts of lights that are got by the direct ratio assumed relations with deposition energy in TL elements, which can largely reduce the error of calculation results of the amounts of lights. These data can be used for the design of individual dosimeter which used TLD-2000 thermo-luminescence elements, also have a certain reference value for manufacturer to improve the energy-response performance of TL elements by formulation adjustment.

몬테카를로 방법을 이용한 중재방사선시술자에 대한 선량평가 (Assessment of Occupational Dose to the Staff of Interventional Radiology Using Monte Carlo Simulations)

  • 임영기
    • Journal of Radiation Protection and Research
    • /
    • 제39권4호
    • /
    • pp.213-217
    • /
    • 2014
  • 중재방사선을 이용한 의료적 시술이나 진단은 꾸준히 증가하고 있다. 특히 환자에 근접하여 이루어지는 중재방사선시술의 특성상 시술자에 대한 직무피폭의 관리 및 감시가 중요하다. 개인선량계를 통해 측정되는 방사선 방호 실용량인 심부선량은 중재방사선시술의 경우 균질한 방사선장에 의해 전신에 고르게 노출되는 경우가 아니므로 유효선량을 항상 대표할 수는 없다. 따라서 본 연구에서는 C-arm을 이용한 대표적인 중재방사선시술에 대해 수학적 모의피폭체와 몬테카를로 방법을 이용한 계산과 개인선량계를 이용한 실측을 통해 개인선량당량과 장기별 선량을 평가하고자 하였다. 주요 장기별 선량평가 결과는 개인선량계로 측정된 선량 값보다 낮았으나, 갑상선과 같은 장기는 전신 연조직 선량보다 상당히 높은 것으로 평가되었다. 중재방사선시술자에 대한 적절한 방사선방호를 위해 납치마의 착용과 같은 전신 방호와 더불어 갑상선 방호와 같은 추가적인 방호조치가 고려되어야 할 것이다.

Insights into the state of radiation protection among a subpopulation of Indian dental practitioners

  • Binnal, Almas;Rajesh, Gururaghavendran;Denny, Ceena;Ahmed, Junaid;Nayak, Vijayendra
    • Imaging Science in Dentistry
    • /
    • 제43권4호
    • /
    • pp.253-259
    • /
    • 2013
  • Purpose: Radiographs is an integral part of patient management in dentistry, despite their detrimental effects. As the literature pertaining to radiation protection among Indian dental practitioners is sparse, exploring such protection is needed. Materials and Methods: All private dental practitioners in Mangalore, India were included in the study. A structured, pre-tested, self-administered questionnaire was employed to assess the knowledge, attitudes, practices, previous training, perceptions towards the need to spread awareness, and willingness to gain and implement knowledge about radiation hazards and protection. Information regarding each respondent's age, gender, education, and type and duration of practice was collected. Results: Overall, 87 out of 120 practitioners participated in the study. The mean knowledge, attitude, and practice scores were $9.54{\pm}2.54$, $59.39{\pm}7.01$, and $5.80{\pm}3.19$, respectively. Overall, 25.3% of the respondents had undergone training in radiation protection, 98.9% perceived a need to spread awareness, and 94.3% were willing to improve their knowledge. Previous training showed a significant correlation with age, sex, and duration of practice; attitude was significantly correlated with education and type of practice; and knowledge scores showed a significant correlation with type of practice. Conclusion: Although the knowledge and practices of respondents were poor, they had a positive attitude and were willing to improve their knowledge. Age, sex, and duration of practice were associated with previous training; education and type of practice with attitude scores; and type of practice with knowledge scores. The findings of this study suggest a policy is needed to ensure the adherence of dental practitioners to radiation protection guidelines.

방사선안전관리를 위한 Process Mapping 개발 (Development of the Process Mapping for the Radiation Safety Management)

  • 이용식;이진우;이윤종
    • Journal of Radiation Protection and Research
    • /
    • 제38권3호
    • /
    • pp.149-156
    • /
    • 2013
  • 최근 국내 방사선이용기관 수의 증가와 시설의 다양한 투자로 운영 및 안전관리가 복잡해지고 있다. 그러나 작업종사자 수와 방사선 시설증가에도 불구하고 방사선안전관리자 인력은 증가되지 않고 있는 실정이며, 소수의 방사선안전관리자에 의해 방사선작업종사자 등록 및 관리, 선원관리, 방사선량 감시, 배기 및 배수 등의 많은 업무가 관리되고 있다. 이러한 문제점은 방사선 사고발생의 직 간접적인 사고의 원인이 되고 있다. 본 연구에서는 방사선을 이용하는 시설의 효율적인 안전관리와 사고예방을 위한 방사선안전관리 업무절차를 도식화(Process Mapping)하였다. Process Mapping 개발을 위해 방사선안전관리 현안요건을 분석하고, 개별 절차상의 업무분석을 통해 방사선안전관리 체계를 정비하였다. 개발한 Process Mapping을 바탕으로 각 기관에 적합한 업무절차의 흐름을 명확히 구성함으로써 방사선을 이용하는 시설의 안전 위해 요인을 줄이고 방사선안전관리 체계를 개선할 수 있으며, 필요에 따라 Process Mapping을 수정보완하여 방사선안전관리에 효과적으로 사용할 수 있다.

방사선 사고시의 의료대책 (Medical Preparedness in Radiation Accidents)

  • 김은실;김종순
    • Journal of Radiation Protection and Research
    • /
    • 제21권3호
    • /
    • pp.201-215
    • /
    • 1996
  • Radiation and radioactive materials serve man in many beneficial ways. Diagnostic X-ray, radiation therapy, and other nuclear medicine uses of radioactivity save thousands of lives each year. Industrial application of radiation, such as radiography, make many manufactured products more reliable and less expensive. Nuclear power plants are producing more electrical power each year and reducing our dependence on imported oil. However, radiation can and dose produce harmful effects particularly as the reault of a radiation accident in which a victim receives as the result of a radiation accident in which a victim receives a large dose. Fortunately such accidents are very rare and recently we need more electric power produced by nuclear power plants. Considering increase of use of radiation or radioactive materials, we have to establish the radiological emergency response system prepared for radiation accidents.

  • PDF