• Title/Summary/Keyword: radiation mode

Search Result 481, Processing Time 0.049 seconds

Test of a Multilayer Dose-Verification Gaseous Detector with Raster-Scan-Mode Proton Beams

  • Lee, Kyong Sei;Ahn, Sung Hwan;Han, Youngyih;Hong, Byungsik;Kim, Sang Yeol;Park, Sung Keun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.297-304
    • /
    • 2015
  • A multilayer gaseous detector has been developed for fast dose-verification measurements of raster-scan-mode therapeutic beams in particle therapy. The detector, which was constructed with eight thin parallel-plate ionization chambers (PPICs) and polymethyl methacrylate (PMMA) absorber plates, is closely tissue-equivalent in a beam's eye view. The gas-electron signals, collected on the strips and pad arrays of each PPIC, were amplified and processed with a continuous charge.integration mode. The detector was tested with 190-MeV raster-scan-mode beams that were provided by the Proton Therapy Facility at Samsung Medical Center, Seoul, South Korea. The detector responses of the PPICs for a 190-MeV raster-scan-mode proton beam agreed well with the dose data, measured using a 2D ionization chamber array (Octavius model, PTW). Furthermore, in this study it was confirmed that the detector simultaneously tracked the doses induced at the PPICs by the fast-oscillating beam, with a scanning speed of 2 m s-1. Thus, it is anticipated that the present detector, composed of thin PPICs and operating in charge.integration mode, will allow medical scientists to perform reliable fast dose-verification measurements for typical dynamic mode therapeutic beams.

Evaluation of Radiation Doses of Dental Portable Equipment (치과용 이동형 방사선장치의 선량평가)

  • Park, Hoon-Hee;Kang, Byung-Sam
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.445-450
    • /
    • 2018
  • We aim to evaluate safety of radiation by measuring leakage dose and patient(phantom) incident dose of ZEN-PX II dental portable equipment developed by G company. Measurement for leakage dose of equipment is conducted on the top, at the bottom, on the left, on the right and at the back. Dose measurement incident on the subject with the area dosimeter when using the phantom and measurement the leakage dose of equipment when using the phantom are evaluated. Comparing the right with the highest leakage dose as a 0 cm, 25 cm, 50 cm, 75 cm and 100 cm dose measurement at the measurement height of 100 cm, 64.2 uR was reduced to 47.3 uR in the senser mode 0.32sec. Even in film mode it was measured at 414.4 uR and about 27% lower at 162.6 uR. As the result of this study, when the irradiation time is 2 sec the right side dose is 290.5 uR and sensor mode is 0.32 sec the right side dose is 64.2 uR.

Structural Modification for the Reduction of Radiation Noise of a Powertrain Based on CAE Technology (CAE를 이용한 파워트레인의 방사소음 저감을 위한 구조변경)

  • Song, Min-Keun;Oh, Ki-Seok;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.439-447
    • /
    • 2008
  • One of the key elements in efforts to minimize noise radiation from a powertrain is the knowledge of the main radiating component and the relation between the surface vibration of a powertrain and the sound pressure. In this research, the powertrain model is developed based on FEM(finite element method). This model is applied to the prediction of the vibration of a powertrain by using ADAMS and the radiation noise by using BEM(boundary element method). According to this numerical analysis, the surface vibration of a powertrain is investigated as a source of radiated noise. This surface vibration is caused by the 1st order natural vibration of the cylinder block and its mode shape is the torsion mode. Therefore, this mode shape is modified to reduce the surface vibration of the powertrain. The radiation noise of the modified powertrain is also reduced to $5{\sim}12\;dB$. This modification is very successful for the noise reduction based on the CAE technology.

The Otimization of Laser System for Photodynamic Therapy of Malignancies (악성종양의 광역학적 치료를 위한 레이저 시스템의 최적화)

  • 임현수;김주옥;황인경
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.6
    • /
    • pp.51-60
    • /
    • 2004
  • In this paper, we optimized the PDT laser system to improve the therapy effects of malignancies. In order to optimize, the variation of laser output and specific wavelength shift have to reduced. To improve the PDT therapy clinician require the diverse radiation mode which irradiate the tumor surface. Continuous wave mode that general application may causes tissue thermal damage not only to tumor tissue, but also to normal tissue. In this paper, therefore, we suggested new technique for radiation method to improved PDT effects and prevented to the thermal effects for the tissue. In the experimental we verified the stability of wavelength, laser output stability and proved the reduced thermal effects to the tissue using the pulse & burst radiation modes in vitro.

The Evaluation of Radiation Dose by Exposure Method in Digital Magnification Mammography (디지털 유방확대촬영술에서 노출방식에 따른 피폭선량 평가)

  • Kim, Mi-Young;Kim, Hwa-Sun
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.293-298
    • /
    • 2012
  • In digital mammography, Exposure factor were automatically chosen using by measurement breast thickness and the density of mammary gland. It may cause a increase glandular dose. The purpose of this study was to investigate optimal image quality in digital magnification mammography to decrease radiation exposure of patient dose. Auto mode gives the best image quality however, AGD showed better image quality. Image quality of manual mode passed phantom test and SNR at 55% mAs of auto mode commonly used in the digital magnification mammography. Also it could reduce AGD. According to result, manual mode may reduce the unnecessary radiation exposure in digital magnification mammography.

A Study on Characteristics of Diode Detecter for Verification of Radiation Therapy (방사선 치료위치 검증을 위한 다이오드 검출기의 특성에 관한 연구)

  • 이동훈;김윤종;지영훈;이동한;홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.106-109
    • /
    • 2000
  • The diode characteristics for therapy radiation sensor have been studied by irradiating therapy radiation from the MM22 microtron accelerator. Signal processing has been performed in the pulse mode which can process the signal fast. We have designed integrator, peak detector and synchronization circuit to detect diode signal in the pulse mode for implementation of portal image. We also read the diode signal by A/D board and displayed the peak value with LabView program. Because the quality of portal image obtained by film in the case of therapy radiation is much worse than that of diagnostic film, Digital radiography system by rectifier diode detector was suggested for portal Image.

  • PDF

A Study on the Radiation-Induced Loss of Optical Fiber by ${\gamma}$-ray Irradiation (감마선 조사에 의한 광섬유의 전송손실 특성변화에 관한 연구)

  • 김웅기;이용범;이종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.604-611
    • /
    • 1990
  • One of the confronting problems in using optical fibers under radiation environments is producing of color centers in optical materials due to nuclear radiation. These centers increase transmission loss by absorbing propagating light. In this study, the radiation effects on optical fiber are studied theoretically. Also, optical attenuation induced by \ulcorner-ray irradiation from Co**60 for single mode and multimode optical fibers is measured at the optical wavelength of 0.85\ulcorner and 1.3\ulcorner, and the results are analyzed. Gammaray is irradiated for 5hours at the rate of 300rads/min, which is corresponding to 90 krads of integrated dose. In case of multimode optical fibers, the induced loss at 0.85\ulcorner wavelength has been twice higher than that at 1.3\ulcorner. The loss in multimode fibers has been significantly larger by 7-20 times than that in single mode fibers, dependently on fiber materials at 1.3\ulcorner.

  • PDF

Numerical Investigation of Sound Generation in the Flow Past a Cavity (공동을 지나는 비정상 유동에 의한 소음 방사 해석)

  • Heo, Dae-Nyoung;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.104-109
    • /
    • 2000
  • The modes of oscillation and radiated acoustic fields of compressible flows over open cavities are investigated computationally. The compressible Navier-Stokes equations are solved for two-dimensional cavities with laminar boundary layers upstream. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Physically correct numerical boundary conditions are implemented to produce time-accurate solutions in the whole computation domain. The computational domain is large enough to directly resolve a portion of the radiated acoutic field. The results show a transition from a shear layer mode, for shorter cavities and lower Mach numbers, to a wake mode for longer cavities and higher Mach numbers. The shear layer mode is well characterized by Rossiter modes and these oscillations lead to intense upstream acoustic radiation dominated by a single frequency. The wake mode is characterized instead by a large-scale vortex shedding. Acoustic radiation is more intense, with multiple frequencies present.

  • PDF

Reduction of Radiated Noise by Eigen-property Control (구조물의 고유특성 제어를 통한 방사 소음 저감)

  • 최성훈
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.376-382
    • /
    • 2004
  • The interaction between a vibrating structure and a surrounding acoustic medium determines the acoustic power propagating into the far-field. A straightforward method to reduce the radiated power is to reduce the vibration of the structure. However it is more efficient to control the modes of the structure separately since each vibration mode of the structure has different radiation efficiency. An efficient method to reduce the sound radiation in the low frequency region is proposed by reducing the radiation efficiency of the structure. Numerical simulations are carried out for a simply-supported beam in which the feed-forward control is applied to reduce the volume velocity of each structural mode. This method is found to be very efficient in reducing low frequency sound radiation.

Circular Dual Mode Horn Antenna(CDMHA) with Modified Aperture to Improve E/H-Plane Radiation Pattern Symmetry (E/H 평면 방사 패턴 대칭성 향상을 위해 개구면이 변형된 원형 이중 모드 혼 안테나)

  • Kim, Jae Sik;Yoon, Ji Hwan;Yoon, Young Joong;Lee, Woo-Sang;So, Joon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.502-507
    • /
    • 2013
  • In this paper, a circular dual mode horn with modified aperture is proposed to improve a E/H-plane radiation pattern symmetry of a conventional oversized circular dual mode horn. The proposed antenna consists of a feeding section, a mode generation section and a phase matching section which has aperture shape transition from circle to ellipse or rectangle to improve a E/H-plane radiation pattern symmetry. To compare the performances between the proposed antenna and the convenional circular dual mode horn, the conventional circular dual mode horn and the proposed circular dual mode horn with rectangular aperture are fabricated and researched at 15 GHz. The measured results show that the conventional circular dual mode horn has 3.394 dB difference while the proposed antenna has only 0.539 dB difference between E and H-plane radiation patterns within the -11 dB beamwidth($53^{\circ}$) which is required beamwidth of the feed horn for the maximum aperture efficiency where f/d ratio of reflector antenna is 1.