• Title/Summary/Keyword: radiation industries

Search Result 124, Processing Time 0.021 seconds

Governmental Science and Technology Policy-Making on Technology-Intensive Industry Based on Allison's Models : Focused on the Nuclear and Radiation Field (앨리슨모형을 기반으로 한 기술집약적 산업의 정부 과학기술 정책결정: 원자력 및 방사선 분야를 중심으로)

  • Cha, Seokki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.507-514
    • /
    • 2018
  • Technology-intensive industries can be used as a major growth engine for resource poor country in the territories. For example, in the case of Korea, nuclear power and radiation technology industry was highly developed, and it was possible to obtain national interests such as solving energy problems within the country and exporting nuclear power plants. On the other hand, there are cases where national damage is caused by erroneous governmental policy-making on technology-intensive sectors. In this study, we analyzed cases of misguided governmental policy-making for technology-intensive industry and three factors were identified. And we tried to develop a rational policy-making model using three types of allison's model in combination. The results of this study are expected to be useful for rational governmental policy-making processes for technology-intensive industries.

Ground High/Low Temperature Test for FA-50 Aircraft (FA-50 경공격기 전기체 지상 고/저온시험)

  • Ahn, Jong Hoon;Kim, Tae Ho;Woo, Seung Cheol;Cho, Young Kyun;Kim, Do Wan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The ground high/low temperature test objective is to check the normal ground operation of FA-50 aircraft in the extreme ground ambient conditions. The aircraft was exposed in climatic conditions of the basic climatic category according to the MIL-HDBK-310. For verified normal operation in the extreme high temperature, the high temperature test was performed in the hot regional type conditions and accentuated solar radiation heat. This test was performed at the test chamber in ADD where is in Haemi. This paper was described about the test procedure of FA-50 high/low temperature including preparation, testing and results.

  • PDF

A Study on the Dose Constraints for Occupational Exposure: Focusing on Expert Opinions by Field of Ridiation Industry (직무피폭의 선량제약치에 관한 연구: 분야별 전문가 의견 중심으로)

  • Il Park;Chan Hee Park;Kyu Hwan Jung;Chan Ho Park;Yong Geon Kim;Tae Jin Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2023
  • A Study on the Introduction of Dose Constraints for Occupational Exposures: Focusing on Experts' Opinions by Field of Radiation Industry. The International Commission on Radiological Protection suggests Justification, Optimization, and Dose Limits as the three principles of radiological protection, among which, as a means of protection optimization, ICRP 103 recommends to set dose constraints. In this study, opinions are collected from experts in each category of radiation industries for stakeholder participation to qualify dose constraints. A guidance and questionnaire for analyzing the dose constraints have been developed for their collection, and opinions were collected from radiation protection experts in selected categories. 20 out of 22 experts, consisted with 91%, have assessed the dose constraints setting is necessary, and 2 experts, consisted with 9%, assessed it is unnecessary. The average of dose constraint presented by experts for RI production institutions is to be the highest level of 15.3 mSv, and light-water reactors (14.6 mSv), non-destructive inspection (14.4 mSv), heavy-water reactor and medical institutes (13.9mSv) is to be above the overall average dose constraint. In case of public institutions, the average dose constraint is to be 8.6mSv, and research institutions (8.8mSv), educational institutions (9.6 mSv), waste disposal sites (9.7 mSv), and general industries (10.6 mSv) are resulted to below the overall average dose constraint. As for the means of setting dose constraints, 8 experts out of 22 suggested setting dose constraints for each specific industry or task. And, 5 experts especially suggest setting dose constraints for the specific groups with relatively high exposure, such as workers with above the record levels. As a countermeasure for workers who exceed the dose constraints, 15 experts out of 22 expressed that the cause analyses for them and preparation for a plan of reducing them are necessary.

Commissioning and Validation of a Dedicated Scanning Nozzle at Samsung Proton Therapy Center

  • Chung, Kwangzoo;Han, Younyih;Ahn, Sung Hwan;Kim, Jin Sung;Nonaka, Hideki
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.267-271
    • /
    • 2016
  • In this study, we present the commissioning and validation results of a dedicated scanning nozzle. The dedicated scanning nozzle is installed in one of the two gantry treatment rooms at Samsung Proton Therapy Center. Following a successful completion of the acceptance test, the commissioning process including the beam data measurement for treatment planning system has been conducted. Extended measurements have been conducted as a validation of the clinical performance of the nozzle and various quality assurance protocols have been prepared.

Development of Freeze-dried Bibimbap, Korean Cooked Rice with Red Pepper Paste, as a Space Food Sterilized by Irradiation (동결건조 비빔밥을 이용한 방사선 멸균 우주식품 개발)

  • Lee, Ju-Yeon;Song, Beom-Seok;Park, Jae-Nam;Kim, Jae-Hun;Choi, Jong-Il;Park, Jong-Heum;Kim, Jae-Kyung;Lee, Ju-Woon
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.267-272
    • /
    • 2011
  • This study evaluated the microbial population (total aerobic count, fungi) and organoleptic quality of freeze-dried bibimbap sterilized by gamma irradiation to develop the space food. An irradiation dose above 30 kGy was needed to sterilize the freeze-dried bibimbap, while organoleptic quality of the sample was significantly decreased by irradiation (p<0.05). However, it was observed that scores on overall acceptance of rehydrated bibimbap after irradiation were the highest, when vitamin C and paprika extract were added at 0.1%, respectively. Therefore, it was considered that the freeze-dried bibimbap could be developed as a space food, which meet microbial requirements and organoleptic quality through addition of vitamin C 0.1% and paprika extract 0.1% before gamma irradiation at 30 kGy.

Study on Dose Rate on the Surface of Cask Packed with Activated Cut-off Pieces from Decommissioned Nuclear Power Plant

  • Park, Kwang Soo;Kim, Hae Woong;Sohn, Hee Dong;Kim, Nam Kyun;Lee, Chung Kyu;Lee, Yun;Lee, Ji Hoon;Hwang, Young Hwan;Lee, Mi Hyun;Lee, Dong Kyu;Jung, Duk Woon
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.178-186
    • /
    • 2020
  • Background: Reactor pressure vessel (RV) with internals (RVI) are activated structures by neutron irradiation and volume contaminated wastes. Thus, to develop safe and optimized disposal plan for them at a disposal site, it is important to perform exact activation calculation and evaluate the dose rate on the surface of casks which contain cut-off pieces. Materials and Methods: RV and RVI are subjected to neutron activation calculation via Monte Carlo methodology with MCNP6 and ORIGEN-S program-neutron flux, isotopic specific activity, and gamma spectrum calculation on each component of RV and RVI, and dose rate evaluation with MCNP6. Results and Discussion: Through neutron activation analysis, dose rate is evaluated for the casks containing cut-off pieces produced from decommissioned RV and RVI. For RV cut-off ones, the highest value of dose rate on the surface of cask is 6.97 × 10-1 mSv/hr and 2 m from it is 3.03 × 10-2 mSv/hr. For RVI cut-off ones, on the surface of it is 0.166 × 10-1 mSv/hr and 2 m from it is 1.04 × 10-1 mSv/hr. Dose rates for various RV and RVI cut-off pieces distributed lower than the limit except the one of 2 m from the cask surface of RVI. It needs to adjust contents in cask which carries highly radioactive components in order to decrease thickness of cask. Conclusion: Two types of casks are considered in this paper: box type for very-low-level waste (VLLW) as well as low-level waste (LLW) and cylinder type for intermediate-level waste (ILW). The results will contribute to the development of optimal loading plans for RV and RVI cut-off pieces during the decommissioning of nuclear power plant that can be used to prepare radioactive waste disposal plans for the different types of wastes-ILW, LLW, and VLLW.

Improvement of physiological activity and processing quality through structural transformation of natural biomaterials based on radiation technology (방사선분자변환기술 기반 천연 생물소재 구조변환에 따른 가공적성 및 생리활성 증진 연구)

  • Byun, Eui-Baek;Song, Ha-Yeon;Kim, Hye-Min;Kim, Woo Sik;Lee, Seung Sik;Choi, Dae Seong;Lim, Sang-Yong;Chung, Byung Yeoup
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.249-259
    • /
    • 2018
  • Radiation technology (RT) has long been applied in various fields for increasing the safety and shelf-life of foods by controlling pathogen-induced poisoning. RT was introduced for the first time in Korea in the 1950s to eliminate harmful microorganisms in food materials. In the 1980s, RT had been scientifically proven to be effective for the sterilization of food and public health products. In recent years, irradiation with gamma rays has also been used for improving physiological properties through the structural modification of natural molecules, which has been proposed to be applicable to various industries. In particular, radiation transformation technology (RTT), which involves the development of new functional compounds through the molecular conversion of natural biomaterials, is becoming a new high-value technology as a fusion technique of RT and biotechnology. The present reports have suggested that RTT can be an effective tool for the development of new functional compounds and improvement of the physiological activity of biomolecules.

Characterization of a CLYC Detector and Validation of the Monte Carlo Simulation by Measurement Experiments

  • Kim, Hyun Suk;Smith, Martin B.;Koslowsky, Martin R.;Kwak, Sung-Woo;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.48-55
    • /
    • 2017
  • Background: Simultaneous detection of neutrons and gamma rays have become much more practicable, by taking advantage of good gamma-ray discrimination properties using pulse shape discrimination (PSD) technique. Recently, we introduced a commercial CLYC system in Korea, and performed an initial characterization and simulation studies for the CLYC detector system to provide references for the future implementation of the dual-mode scintillator system in various studies and applications. Materials and Methods: We evaluated a CLYC detector with 95% $^6Li$ enrichment using various gamma-ray sources and a $^{252}Cf$ neutron source, with validation of our Monte Carlo simulation results via measurement experiments. Absolute full-energy peak efficiency values were calculated for gamma-ray sources and neutron source using MCNP6 and compared with measurement experiments of the calibration sources. In addition, behavioral characteristics of neutrons were validated by comparing simulations and experiments on neutron moderation with various polyethylene (PE) moderator thicknesses. Results and Discussion: Both results showed good agreements in overall characteristics of the gamma and neutron detection efficiencies, with consistent ~20% discrepancy. Furthermore, moderation of neutrons emitted from $^{252}Cf$ showed similarities between the simulation and the experiment, in terms of their relative ratios depending on the thickness of the PE moderator. Conclusion: A CLYC detector system was characterized for its energy resolution and detection efficiency, and Monte Carlo simulations on the detector system was validated experimentally. Validation of the simulation results in overall trend of the CLYC detector behavior will provide the fundamental basis and validity of follow-up Monte Carlo simulation studies for the development of our dual-particle imager using a rotational modulation collimator.

Development and Characterization of Novel Rapeseed (Brassica napus L.) Mutant Lines through Mutation Breeding

  • Baul Yang;Sang Hoon Kim;Joon-Woo Ahn;Chang-Hyu Bae;Jaihyunk Ryu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.23-23
    • /
    • 2022
  • Rapeseed (Brassica napus L.) is one of the most valuable oilseed crop in the world. It is widely used in various industries, such as food, animal feed, energy and chemical industries. In order to improve the industrial requirements for rapeseed, useful agronomic characteristics (higher yields and disease resistance etc.) and modified oil traits (fatty acid composition and fat content) are important in rapeseed. However, Korea has limiting genetic resources of novel traits in rapeseed. In this research, novel rapeseed mutant genotypes by mutation breeding was developed. The mutant lines were generated by the treatment of the seeds of the original cultivar 'Tamra' with 700 Gy of gamma-ray (60Co). Mutants showing varied in flowering time, crude fat content, seed yield and fatty acid content that exhibited stable inheritance of the mutated characteristics from M5 to M7 generations were selected. We investigated genetic variation using SNPs identified from GBS analysis in rapeseed mutant lines derived from the gamma-ray, and interactions between the major agronomic and the oil traits. Significantly associated SNP loci were explored along with candidate genes using SNPs obtained by GBS analysis. As a results of association mapping, a total of 322 SNPs were significantly associated with agronomic traits (155 SNPs) and oil traits (167 SNPs). A total of 70 genes were annotated from agronomic characteristics SNPs; among them 7 genes significantly enriched in developmental process, and a total of 70 genes were annotated from crude fat content and fatty acid compositions SNPs; among them, 11genes were significantly enriched in biosynthetic process. These results could be used for the selection of rapeseed cultivar with enhanced qualities and potential economic benefits.

  • PDF

Study on the Physiological Activities of Gamma-irradiated Seafood Cooking Drips (감마선 조사에 의한 수산 자숙액의 생리활성에 대한 연구)

  • Jo, Eu-Ri;Kim, Yeon-Joo;Choi, Jong-il;Sung, Nak-Yun;Jung, Pil-Moon;Kim, Jae-Hun;Song, Beom-Seok;Yoon, Yohan;Lee, Ju-Yeoun;Lee, Ju-Woon
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • Cooking drips which were obtained as by-product after seafood processing in the food industries, still contain lots of proteins, carbohydrates, and other functional materials. This study was conducted to investigate the effect of gamma irradiation on the biological activities of seafood cooking drips. When the cooking drips of Hizikia fusiformis, Enteroctopus dofleini and Thunnus thynnus were irradiated, the antioxidant activities, whitening effect, and angiotensin I converting enzyme inhibition activity of the ethanol extract from seafood cooking drips were all increased by gamma irradiation. This was because of the increased extraction efficiency of available compounds by irradiation. These results suggested that the seafood cooking drips, wasted as by-products, can be used as functional compounds with gamma irradiation treatment.