• Title/Summary/Keyword: radiation dose distribution

Search Result 722, Processing Time 0.03 seconds

Correction of Dose Distribution at Total Body Irradiation using Compensator

  • Kim Jong Sik;Cho Hyun Sang;Kim Young Kon;Cho Jung Keun;Ju Sang Kyu;Park Young Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.87-93
    • /
    • 1997
  • The using of compensator is required to adjust the irregular dose distribution due to irregular thickness of the body in Total Body Irradiation. Aluminuim, copper or lead is generally used as compensator. In our study, we would like to introduce a result of the attenuation and compensation effect of radiation use compensator made by duralumin and its clinical use. The thickness of compensator was calculated by the attenustion of radiation, which was measured by polystyrene phantom and ionization chamber(farmer). The compensation effect of radiation was measured by diode detector. All of conditions were set as in real treatment, and the distanc from source to detector was 446 cm. We also made fixation of device to easily attach the compensator to LINAC. Beam spoiler was menufactured and placed on the patient to irradiate sufficient dose to the skin. diode detector were placed on head, neck, chest, umbilicus. pelvis and knee with each their entranced exit points, and datas of dose distribution were evaluated and compared in each points for eleven patients(Feb. 96-Feb. 97). The attenuation rate of irradiation by duralumin compensator was measured as $1.4\%$ in 2mm thickness. The mean attenuation rate was $1.3\%$ per 2mm as increasing the thickness gradually to 50 mm. By using duralunim compensator, dose distribution in each points of body was measured with ${\pm}2.8\%$ by diode detectior. We could easily calculate the thickness of compensator by measuring the attenuation rate of radiation, remarkably reduce the irragularity of dose distribution duo to the thickness of body and magnify the effect of radiation therapy.

  • PDF

Verification of Dose Distribution for Stereotactic Radiosurgery with a Linear Accelerator (선형가속기를 이용한 방사선 수술의 선량분포의 실험적 확인)

  • Park Kyung Ran;Kim Kye Jun;Chu Sung Sil;Lee Jong Young;Joh Chul Woo;Lee Chang Geol;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.421-430
    • /
    • 1993
  • The calculation of dose distribution in multiple arc stereotactic radiotherapy is a three-dimensional problem and, therefore, the three-dimensional dose calculation algorithm is important and the algorithm's accuracy and reliability should be confirmed experimentally. The aim of this study is to verify the dose distribution of stereotactic radiosurgery experimentally and to investigate the effect of the beam quality, the number of arcs of radiation, and the tertiary collimation on the resulting dose distribution. Film dosimetry with phantom measurements was done to get the three-dimensional orthogonal isodose distribution. All experiments were carried out with a 6 MV X-ray, except for the study of the effects of beam energy on dose distribution, which was done for X-ray energies of 6 and 15 MV. The irradiation technique was from 4 to 11 arcs at intervals of from 15 to 45 degrees between each arc with various field sizes with additional circular collimator. The dose distributions of square field with linear accelerator collimator compared with the dose distributions obtained using circular field with tertiary collimator. The parameters used for comparing the results were the shape of the isodose curve, dose fall-offs fom $90\%$ to $50\%$ and from $90\%\;to\;20\%$ isodose line for the steepest and shallowest profile, and $A=\frac{90\%\;isodose\;area}{50\%\;isodose\;area-90\%\;isodose\;area}$(modified from Chierego). This ratio may be considered as being proportional to the sparing of normal tissue around the target volume. The effect of beam energy in 6 and 15 MV X-ray indicated that the shapes of isodose curves were the same. The value of ratio A and the steepest and shallowest dose fall-offs for 6 MV X-ray was minimally better than that for 15 MV X-ray. These data illustrated that an increase in the dimensions of the field from 10 to 28 mm in diameter did not significantly change the isodose distribution. There was no significant difference in dose gradient and the shape of isodose curve regardless of the number of arcs for field sizes of 10, 21, and 32 mm in diameter. The shape of isodose curves was more circular in circular field and square in square field. And the dose gradient for the circular field was slightly better than that for the square field.

  • PDF

Radiation Exposure from Nuclear Power Plants in Korea: 2011-2015

  • Lim, Young Khi
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.222-228
    • /
    • 2017
  • Background: On June 18, 2017, Korea's first commercial nuclear reactor, the Kori Nuclear Power Plant No. 1, was permanently suspended, and the capacity of nuclear power generation facilities will be adjusted according to the governments denuclearization policy. In these circumstances, it is necessary to assess the quality of radiation safety management in nuclear power plants in Korea by evaluating the radiation dose associated with them. Materials and Methods: The average annual radiation dose per unit, the annual radiation dose per person, and the annual dose distribution were analyzed using the radiation dose database of nuclear reactors for the last 5 years. The results of our analysis were compared to the specifications of the Nuclear Safety Act and Medical Law in Korea. Results and Discussion: The annual average per unit radiation dose of global major nuclear power generation was 720 man-mSv, while that of Korea's nuclear power plants was 374 manmSv. No workers exceeded 50 mSv per year or 100 mSv in 5 years. The individual radiation dose according to occupational exposure was 0.59 mSv for nuclear workers, 1.77 mSv for non-destructive workers, and 0.8 mSv for diagnostic radiologists. Conclusion: The radiation safety management of nuclear power plants in Korea has achieved the best outcomes worldwide, which is considered to be the result of the as-low-as-reasonably-achievable (ALARA) approach and strict radiation safety management. Moreover, the occupational exposures were also very low.

Analysis of Dose Distribution According to the Initial Electron Beam of the Linear Accelerator: A Monte Carlo Study

  • Park, Hyojun;Choi, Hyun Joon;Kim, Jung-In;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.10-19
    • /
    • 2018
  • Background: Monte Carlo (MC) simulation is the most accurate for calculating radiation dose distribution and determining patient dose. In MC simulations of the therapeutic accelerator, the characteristics of the initial electron must be precisely determined in order to achieve accurate simulations. However, It has been computation-, labor-, and time-intensive to predict the beam characteristics through predominantly empirical approach. The aim of this study was to analyze the relationships between electron beam parameters and dose distribution, with the goal of simplifying the MC commissioning process. Materials and Methods: The Varian Clinac 2300 IX machine was modeled with the Geant4 MC-toolkit. The percent depth dose (PDD) and lateral beam profiles were assessed according to initial electron beam parameters of mean energy, radial intensity distribution, and energy distribution. Results and Discussion: The PDD values increased on average by 4.36% when the mean energy increased from 5.6 MeV to 6.4 MeV. The PDD was also increased by 2.77% when the energy spread increased from 0 MeV to 1.019 MeV. In the lateral dose profile, increasing the beam radial width from 0 mm to 4 mm at the full width at half maximum resulted in a dose decrease of 8.42% on the average. The profile also decreased by 4.81% when the mean energy was increased from 5.6 MeV to 6.4 MeV. Of all tested parameters, electron mean energy had the greatest influence on dose distribution. The PDD and profile were calculated using parameters optimized and compared with the golden beam data. The maximum dose difference was assessed as less than 2%. Conclusion: The relationship between the initial electron and treatment beam quality investigated in this study can be used in Monte Carlo commissioning of medical linear accelerator model.

Analysis of Dose Distribution on Critical Organs for Radiosurgery with CyberKnife Real-Time Tumor Tracking System (사이버나이프 실시간 종양추적 시스템을 이용한 방사선수술 시 주요 장기의 선량분포 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Ji, Young-Hoon;Kim, Kum-Bae;Lee, Sang-Hoon;Choi, Jin-Ho;Lee, Re-Na;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.14-20
    • /
    • 2009
  • We measured the dose distribution for spinal cord and tumor using Gafchromic film, applying 3D and 4D-Treatment Planning for lung tumor within the phantom. A measured dose distribution was compared with a calculated dose distribution generated from 3D radiation treatment planning and 4D radiation treatment planning system. The agreement of the dose distribution in tumor for 3D and 4D treatment planning was 90.6%, 97.64% using gamma index computed for a distance to agreement of 1 mm and a dose difference of 3%. However, a gamma agreement index of 3% dose difference tolerence of and 2 mm distance to agreement, the accordance of the dose distribution around cord for 3D and 4D radiation treatment planning was 57.13%, 90.4%. There are significant differences between a calculated dose and a measured dose for 3D radiation treatment planning, no significant differences for 4D treatment planning. The results provide the effectiveness of the 4D treatment planning as compared to 3D. We suggest that the 4-dimensional treatment planning should be considered in the case where such equipments as Cyberknife with the real time tracking system are used to treat the tumors in the moving organ.

  • PDF

The Effects of Nanoparticles for Irradiation (방사선조사에서 나노 입자 혼합물의 영향)

  • Yea, Ji-Woon;Shin, Hyun-Jin
    • Journal of Yeungnam Medical Science
    • /
    • v.28 no.2
    • /
    • pp.145-152
    • /
    • 2011
  • Background: To evaluate the changes in the radiation dose and temperature distribution on irradiated egg albumin and nanoparticle ($Fe_3O_4$) powder mixed egg albumin. Methods: A new type of phantom was designed by fabricating a $30{\times}30{\times}30cm$ acryl square inside a $3{\times}3{\times}3cm$ small square and dividing it into two parts. In the control group, only egg albumin was irradiated, and in the test group, 25 nm 20 mg/cc, 25 nm 40 mg/cc, and 1 um 40mg/cc nanoparticles with egg albumin were irradiated. The radiation isodose distributions and temperature changes were then observed. Results: No significant changes were observed in the radiation dose and temperature distribution. Conclusion: The nanoparticles were considered not to have had any effect on the radiation dose and temperature distribution under the experimental conditions. Further studies can be conducted based on the changes in the mixture material.

  • PDF

Study on the Exposure Field of Head and Neck with Measurement of X-ray dose Distribution for Dental Panoramic X-ray System (치과 파노라마 장치의 X선 공간선량분포 측정을 통한 두경부 피폭영역 조사에 대한 연구)

  • Oh, Yoonjin;Hong, Girang;Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2015
  • Recently, As people's interest in the health of teeth is increased in the medical field changed into aging society, the number of times for the radiological diagnosis is increased. It can be said that the radiation exposure dose of Korean population is increased. It is also growing concern about radiation exposure. Therefore, the basic data for the dental panoramic X-ray system, its investigation and measuring the radiation dose is needed. In this study, we used ALOKA PDM-117 dosimeter and estimated a two-dimensional dose distribution of the dental panoramic X-ray system (VATEC Pax-400). Dose evaluation about the distribution is confirmed from the point of radiation exposure of a patient. Dose distribution of the dental panoramic X-ray system irradiated chin and the facial region to high dose as well as the parts of teeth. It was founded that the eye lens which are sensitive to radiation are exposed to unnecessary radiation, considering the effect of scattered radiation. The results of this study will be used more accurate dose assessment in a variety of object size and location of measuring dose.

A Study on the Improvement of Penumbra and Dose Distribution in the Multileaf Collimator Field Edge (다엽콜리매이터(Multileaf Collimator) 조사야의 반음영 및 선량분포 개선에 대한 연구)

  • Kim CW.;Kim HN.;Lim CK.;Ra SK.;Park BS.
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.88-93
    • /
    • 1998
  • Multileaf collimator is essential equipment in conformal radiation therapy, however the use is limitted by increase of penumbra width and undulating dose distribution at the field edge. The purpose of this study is to improve the penumbra and dose distribution in the multileaf collimator field edge. Measurement were performed with X-omat V film in solid water phantom using 6MV photon beam from Siemens linear accelerator. All the measurement were made along the central axis of $5{\times}5cm,\;10{\times}10cm$ circular field for constant SSD of 100 cm. To improve the penumbra and dose distribution collimator was rotated by 15 degrees from 0 to 90 degrees (collimator rotation method) and center was shifted to the longitudinal direction by fourth of lead width (center shift method). We compare the penumbra and dose distribution at the field edge to alloy block. Dose distribution and penumbra width at the feild edge of MLC showed undulated dose pattern and increased penumbra compared with alloy block. However, in the collimator rotation method and center shift method we abtained simular results with alloy block. Through the study we expected that clinical use of MLC will be increase.

  • PDF

Preliminary Study of Neuronal Response to Dose Distribution of Radiation with MR Spectroscopy

  • Ahn, Seung-Do;Yi, Byoung-Young;Lee, Jung-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.25-26
    • /
    • 2002
  • The goal of radiation therapy is to maximize the tumor dose and to minimize the dose of normal tissue. In order to achieve this goal, the new radiation therapy techniques such as three dimensional conformal therapy or intensity modulated radiation therapy has been developed and tried to clinical application. The relationship between radiation dose and normal tissue response is an interesting subject in the radiation therapy field.(omitted)

  • PDF