• 제목/요약/키워드: radiation cooling

검색결과 389건 처리시간 0.023초

도시열섬현상완화를 위한 그린인프라 전략 (Green-infra Strategies for Mitigating Urban Heat Island)

  • 박채연;이동근;권유진;허민주
    • 한국환경복원기술학회지
    • /
    • 제20권5호
    • /
    • pp.67-81
    • /
    • 2017
  • Because of lack of accurate understanding of the mechanism of urban heat island (UHI) phenomenon and lack of scientific discussion, it is hard to come up with effective measures to mitigate UHI phenomenon. This study systematically described the UHI and suggested the solutions using green-infrastructure (green-infra). The factors that control UHI are very diverse: radiant heat flux, latent heat flux, storage heat flux, and artificial heat flux, and the air temperature is formed by the combination effect of radiation, conduction and convection. Green-infra strategies can improve thermal environment by reducing radiant heat flux (the albedo effect, the shade effect), increasing latent heat flux (the evapotranspiration effect), and creating a wind path (cooling air flow). As a result of measurement, green-infra could reduce radiant heat flux as $270W/m^2$ due to shadow effect and produce $170W/m^2$ latent heat flux due to evaporation. Finally, green-infra can be applied differently on the macro(urban) scale and micro scale, therefore, we should plan and design green-infra after the target objects of structures are set.

Effect of DUPIC Cycle on CANDU Reactor Safety Parameters

  • Mohamed, Nader M.A.;Badawi, Alya
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1109-1119
    • /
    • 2016
  • Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by $UO_2$ enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

대기안정도 분류방법의 평가 및 실용화에 관한 연구 (Evaluation of Atmospheric Stability Classification Methods for Practical Use)

  • 김정수;최덕일;최기덕;박일수
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.369-376
    • /
    • 1996
  • Major atmospheric stability classification methods were evaluated with meteorological data obtained by scoustic sounding profiler (SODAR/RASS) in Seoul. The Psequill classificatio method, the method most widely used because of its good agreement in respect of synoptic scope under the steady state, fails to describe the time lag, the response time on stability by heating or cooling caused by daily insolation or noctrunal surface radiation. Horizontal and vertical standard deviation of wind fluctuation $(\sigma_A and \sigma_E)$ method tend to classify night-time stable condition (E, F class) into unstable condition (A, B class). The classification matrix tables for Vogt's vertical temperature difference and wind speed using method ($\Delta$T $\cdot$ U) and bulk Richardson number (Rb) were amended for practical use over Seoul. The modified tables for $\Delta$T $\cdot$ U and Rb method were made by using comprehensive frequency distribution from Pasquill's method and other existing results, and the correlation coefficient(r) was equal to 0.829. It was confirmed that atmospheric stability could be changed with monitoring site characteristics, height and vertical difference between sensors of monitoring station, and classification method itself.

  • PDF

시험공간에 대한 난방부하 실증실험 및 계산 (Verification Experiment and Calculation of Heating Load for a Test Space)

  • 현석균;홍희기;유호선
    • 설비공학논문집
    • /
    • 제14권2호
    • /
    • pp.153-160
    • /
    • 2002
  • As a way to assess the reliability of programs for building energy analysis, verification experiment and calculation of heating load are simultaneously conducted for a well-defined test space. Experimental conditions are carefully set to minimize uncertainties associated with radiation heating, air change, infiltration, and room-to-room interaction. Dyna- mic load calculations using TRNSYS, which are performed for two different computation domains, rely on the energy rate control that represents inherent load characteristics of a space. The predicted instantaneous heating load favorably simulates the overall behavior the measured one, though the latter fluctuates much more rapidly than the former Comparison of the accumulative load between the experiment and calculations shows a close agreement within an engineering tolerance, regardless of the computation model. It is deduced from such findings that the present experimental results along with weather information can serve as a set of reference data for validating load calculation softwares from the users'standpoint. In order to enhance the completeness of this work, a complementary study on the cooling load for the same test space is highly recommended.

도심 실제 거칠기 적용과 장래 도심 개발계획에 따른 국지 기상장 변화 수치 모의 (The Effect of Atmospheric Flow Field According to the Urban Roughness Parameter and the Future Development Plan on Urban Area)

  • 최현정;이화운;김민정
    • 한국환경과학회지
    • /
    • 제19권6호
    • /
    • pp.703-714
    • /
    • 2010
  • In this study, we analyzed the impact of orographic and thermal forcing on the atmospheric flow field over the urban metropolitan areas on urban artificial buildings and future development plan. Several numerical experiments have been undertaken in order to clarify the impacts of the future development plan on urban area by analyzing practical urban ground conditions, we revealed that there were large differences in the meteorological differences in each case. The prognostic meteorological fields over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model(MM5). we carried out a comparative examination on the meteorological fields of topography and land-use that had building information and future development plan. A higher wind speed at daytimes tends to be forecasted when using new topography and land use data that have a high resolution with an appropriate limitation to the mixing height and the nocturnal boundary layer(NCB). During nighttime periods, since radiation cooling development is stronger after development plan, the decreased wind speed is often generated.

태양열 보조열원을 이용한 흡수식 시스템의 동적 시뮬레이션에 의한 과도운전 특성 평가 (Dynamic Simulation of Transient Operations of a Solar Power-Assisted Absorption Chiller)

  • 신영기;서정아;우성민
    • 설비공학논문집
    • /
    • 제22권2호
    • /
    • pp.78-85
    • /
    • 2010
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism were modeled. And solar radiation and the solar collector were also modeled along with its control design. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the issues of the excessive circulation flow rate and the mismatch between available solar power and cooling load discourages the use of the single mode, but the dual use of gas and solar power is recommendable in view of controllability and enhanced COP.

시설원예용 수평형 지열 히트펌프 시스템의 성능분석 (Performance Analysis of the Horizontal Ground Source Heat Pump for Greenhouse)

  • 박용정;강신형
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.447-452
    • /
    • 2007
  • Greenhouses should be heated during nights and cold days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger(GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump ($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

DEVELOPMENT OF MARS-GCR/V1 FOR THERMAL-HYDRAULIC SAFETY ANALYSIS OF GAS-COOLED REACTOR SYSTEMS

  • LEE WON-JAE;JEONG JAR-JUN;LEE SEUNG-WOOK;CHANG JONGHWA
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.587-594
    • /
    • 2005
  • In an effort to develop a thermal-hydraulic (TH) safety analysis code for Gas-cooled Reactors (GCRs), the MARS code, which was primarily developed for TH analysis of water reactor systems, has been extended here for application to GCRs. The modeling requirements of the system code were derived from a review of major processes and phenomena that are expected to occur during normal and accident conditions of GCRs. Models fur code improvement were then identified through a review of existing MARS code capability. Among these, the following priority models necessary fur the analysis of limiting high and low pressure conduction cooling events were evaluated and incorporated in MARS-GCR/V1 : 1) Helium (He) and Carbon Dioxide ($CO_2$) as main system fluids, 2) gas convection heat transfer, 3) radiation heat transfer, and 4) contact heat transfer models. Each model has been assessed using various conceptual problems for code-to-code benchmarks and it was demonstrated that MARS-GCR/V1 is capable of capturing the relevant phenomena. This paper describes the models implemented in MARS-GCR/V1 and their verification and validation results.

쑥뜸의 연소 특성에 관한 연구 (A Study on the Characteristics of Moxa Combustion)

  • 양승열;이호재;김진우;박영배;허웅
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1993년도 추계학술대회
    • /
    • pp.128-131
    • /
    • 1993
  • In order to get the basic data for the study of the heat stimulation of burning moxa, the pattern of combustion temperature, which is one of the important factors of thermal characteristics, was measured by density of cone moxa along the time procedure. The following results have been obtained 1) The pattern of combustion temperature by moxa burning was classified into input period which means the infiltration of heat into the area and output period which means the radiation of heat from the area. The input period consists of preheating and heating periods, while the output period consists of heat retaining and cooling periods. 2) The pattern of combustion temperature showed the same type or curve, which was not influenced by the moxa weight. However, Its pattern gradient are varied by density. It is considered that the pattern of combution temperature is primarily influenced by the rate of combustion temperature, gradient temperature and duration of combustion.

  • PDF

자연형 태양 챔버 시스템의 계절별 성능 및 크기 결정 방법 (Sizing Method and Seasonal Performance of Passive Solar Chamber System)

  • 장향인;김병구;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.66-71
    • /
    • 2011
  • This study focused on the application of the Passive Solar Chamber System (PSCS) as proposed by a previous study. The seasonal performance and sizing method for the system were investigated for a feasibility of the PSCS in Korean climate. For seasonal performance, heat and ventilation performances of the PSCS were analyzed for the months of January and August. This study proposed a simple configuration method in which the designer can decide on the system size at the preliminary design stage by using system efficiency, overall heat transfer coefficient transmission, monthly solar radiation, highest and lowest temperatures. During weeks that require heating, the system showed to acquire a daily average heat amount of $860.28Wh/m^2$ day. For cooling periods, the system was computed to supply a daily average natural ventilation of $1,360.2m^3/day$ to the room. Moreover, proposed sizing method and the overall computation results showed a 6.04~7.24% error of assessment.