• Title/Summary/Keyword: radiation attenuation

Search Result 285, Processing Time 0.028 seconds

Three dimensional Dose reconstruction based on transit dose measurement and Monte Carlo calculation (조사문 선량 분포와 Monte Carlo 계산을 이용한 삼차원 선량 재구성에 관한 연구)

  • Park, Dal;Yeo, In-Hwan;Kim, Dae-Yong;An, Yong-Chan;Heo, Seung-Jae
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.91-99
    • /
    • 2000
  • This is a preliminary study for developing the method of the dose reconstruction in the patients, irradiated by mega-voltage photon beams from the linear accelerator, using the transit dose distributions. In this study we present the method of three-dimensional dose reconstruction and evaluate the method by computer simulation. To acquire the dose distributions in the patients (or phantoms) we first calculate the differences between the doses at the arbitrary points in the patients and the doses at the corresponding points where the transit doses are measured. Then, we can get the dose in the patients from the measured transit dose and the calculated value of the difference. The dose differences are calculated by applying the inverse square law and using the linear attenuation coefficient. The scatter to primary dose ratios, which are calculated by the Monte Carlo program using the CT data of the patient (or phantoms), are also used in the calculations. For the evaluation of this method we used various kinds of homogeneous and inhomogeneous phantoms and calculated the transit dose distributions with the Monte Carlo program. From the distributions we reconstructed the dose distributions in the phantom. We used mono-energy Photon beam of 1.5MeV and Monte Carlo program EGS4. The comparison between the dose distributions reconstructed using the method and the distributions calculated by the Monte Carlo program was done. They agreed within errors of -4%∼+2%. This method can be used to predict the dose distributions in the patient

  • PDF

A Study on the Shielding of Iodine 131 Using Monte Carlo Simulation (몬테칼로 모사를 이용한 방사성옥소 I-131의 차폐체에 대한 효용성 연구)

  • Jang, Dong-Gun;Yang, Seoung-Oh;Kim, Jung-Ki;Lee, Sang-Ho;Choi, Hyung-Seok;Bae, Cheol-Woo
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.143-150
    • /
    • 2014
  • This study was designated to investigate the bremsstrahlung and radiation dose by beta rays. Radiation attenuation from I-131 treatment ward was analyzed using radio protective apron. Shielding materials which is included lead or water were simulated in Monte Carlo Simulation then the spectrum on interaction was analyzed. The shielding materials were categorized according to the thickness. 0.25mm and 0.5mm thick lead and 0.1mm and 0.2mm thick water shielding materials were configured in Monte Carlo Simulation for this study. Only lead shielding method and water plus lead shielding method were carried. As a results, when 0.5mm thick lead shielding method was performed, the radiation dose was similar to the results with water plus lead shielding method. In case of using 0.25mm thick lead shielding, the shielding effect was somewhat less. However, that shielding method cause dose reduction of about 60% compare with non-shielding material.

Experimental Performance Evaluation according to the Sticked Backside Plate of Dipole Antenna for RFID Tag (RFID 태그용 다이폴 안테나의 부착 지판에 따른 실험적 성능 평가)

  • Min, Kyeong-Sik;Kim, Jin-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.273-281
    • /
    • 2007
  • This paper presented design for a dipole antenna operated at 900 MHz band RFID tag, and antenna performance varied by the sticked material was experimentally evaluated. When dipole antenna was sticked by the material having a difffrent electric characteristic such as dielectric material, fero-magnetic material and conductor, variations of antenna return loss and radiation pattern according to the sticked material kinds, size, and height between antenna and the sticked plate were experimentally observed and evaluated. When antenna was sticked by dielectric surface, the measured return loss and radiation pattern by affection of different dielectric permittivity ratio showed resonant frequency shift of about 40 MHz and relative attenuation of 1 dB to 3 dB. Even though frequency shift by size variation of the sticked plate was observed, the measured radiation pattern of dipole antenna located on the sticked plate was similar with one without backside plate. In the case of conductor or fero-magnetic material as the sticked ground plate, because of frequency shift and phase difference by distance between dipole antenna and the sticked ground plate, amplitude decrease of radiation pattern at 910 MHz was observed about 5 dB above.

Characteristics of 15 MV Photon Beam from a Varian Clinac 1800 Dual Energy Linear Accelerator (CLINAC 1800 선형가속기의 15 MV X-선의 특성)

  • Kim, Kye-Jun;Lee, Jong-Young;Park, Kyung-Ran
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.131-141
    • /
    • 1991
  • A comprehensive set of dosimetric measurements has been made on the Varian Clinac 1800 15 MV photon beam. Beam quality, percentage depth dose, dose in the build up region, output, symmetry and flatness, transmission through iead (Cerrobend), tray attenuation, isodose curves for the open and wedged fields were measured using 3 dimensional water phantom dosimetry system (including film densitometer system) and polystyrene phantoms. These dosimetric measurements sufficiently characterized the beam to permit clinical use. The depth dose characteristics of photon beam is $d_{max}$ of 3.0 cm and percentage depth dose of $76.8\%$ at 10 cm,100 cm source-surface distance, field size of $10\times10\;cm^2$ for 15 MV X-ray beam. The Output factors ranged 0.927 for $4\times4\;cm^2$ field to 1,087 for $35\times35\;cm^2$ field. The build-up level of maximum dose was at 3.0 cm and surface dose was approximately $15.5\%$ for a field size $10\times10\;cm^2$ The stability of output is $within\pm1\%$ and flatness and symmetry are $within\pm3\%$. The half value thickness (HVL) of lead is 13 mm, which corresponds to an attenuation coefficient of $0.053\;mm^{-1}$. These figures compare facorably with the manufacturesr`s specifications.

  • PDF

Abosrbed Dose Measurements and Phantom Image Ecaluation at Minimum CT Dose for Pediatric SPECT/CT Scan (소아 SPECT/CT 검사를 위한 최저조건에서의 피폭선량측정 및 팬텀의 영상평가)

  • Park, Chan Rok;Choi, Jin Wook;Cho, Seong Wook;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.82-88
    • /
    • 2014
  • Purpose: The purpose of study was to evaluate radiation dose for pediatric patients by changing tube voltage (kVp) and tube current (mA) at minimum conditions. By evaluating radiation dose, we want to provide dose reduction for pediatric patients and maintain good quality of SPECT/CT images. Materials and Methods: Discovery NM/CT 670 Scanne was used as SPECT/CT. Tube voltages are 80 and 100 kvP. Tube currents are 10, 15, 20, 25 mA. Using PMMA (Polymethyl methacrylate) Phantom, radiation dose which were calculated at center and peripheral dose and SNRD (Signal to Noise Ratio Dose) were evaluated. Using the CT performance phantom, spatial resolution was evaluated as the MTF (Modulation Transfer Function) graph. Jaszczak phantom was used for SPECT image evaluation by CNR (Contrast to Noise to Ratio). Results: Radiation dose using the PMMA phantom was higher peripheral dose than center dose about 7%. SNRD were 7.8, 8.2, 8.3, 8.8, 8.8, 9.9, 9.8, 9.6 for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA. We can distinguish 35, 45, 70, 71, 52, 58, 90, 110 linepair for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA at resolution with MTF. CNR of SPECT images using CT attenuation map were 57.8, 57.7, 57.1, 56.7, 56.6, 56.7, 56.7, 56.7% for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA. Conclusion: In this study, radiation dose for pediatric patients showed decreased low dose condition. And SNRD value was similar in all condition. Resolution showed higher value at 100kVp than 80kVp. for CNR, there was no significant difference. we should take additional study to prove better quality and dose reduction.

  • PDF

Change of PET Image According to CT Exposure Conditions (CT 촬영 조건에 따른 PET 영상의 변화)

  • Park, Jae-Yoon;Kim, Jung-hoon;Lee, Yong-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.473-479
    • /
    • 2019
  • PET-CT improves performance and reduces the time by combining PET and CT of spatial resolution, and uses CT scan for attenuation correction. This study analyzed PET image evaluation. The condition of the tube voltage and current of CT will be changed using. Uniformity phantom and resolution phantom were injected with 37 MBq $^{18}F$ (fluorine ; 511 keV, half life - 109.7 min), respectively. PET-CT (Biograph, siemens, US) was used to perform emission scan (30 min) and penetration scan. And then the collected image data were reconstructed in OSEM-3D. The same ROI was set on the image data with a analyzer (Vinci 2.54, Germany) and profile was used to analyze and compare spatial resolution and image quality through FWHM and SI. Analyzing profile with pre-defined ROI in each phantom, PET image was not influenced by the change of tube voltage or exposure dose. However, CT image was influenced by tube voltage, but not by exposure dose. When tube voltage was fixed and exposure dose changed, exposure dose changed too, increasing dose value. When exposure dose was fixed at 150 mA and tube voltage was varied, the result was 10.56, 24.6 and 35.61 mGy in each variables (in resolution phantom). In this study, attenuation image showed no significant difference when exposure dose was changed. However, when exposure dose increased, the amount of dose that patient absorbed increased too, which indicates that CT exposure dose should be decreased to minimum to lower the exposure dose that patient absorbs. Therefore future study needs to discuss the conditions that could minimize exposure dose that gets absorbed by patient during PET-CT scan.

Research on Radiation Shielding Film for Replacement of Lead(Pb) through Roll-to-Roll Sputtering Deposition (롤투롤 스퍼터링 증착을 통한 납(Pb) 대체용 방사선 차폐필름 개발)

  • Sung-Hun Kim;Jung-Sup Byun;Young-Bin Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.441-447
    • /
    • 2023
  • Lead(Pb), which is currently mainly used for shielding purposes in the medical radiation, has excellent radiation shielding functions, but is continuously exposed to radiation directly or indirectly due to the harmfulness of lead itself to the human body and the inconvenience caused by its heavy weight. Research on shielding materials that are human-friendly, lightweight, and convenient to use that can block risks and replace lead is continuously being conducted. In this study, based on the commonly used polyethylene terephthalate (PET) film and the fabric material used in actual radiation protective clothing, a multi-layer thin film was realized through sputtering and vacuum deposition of bismuth, tungsten, and tin, which are metal materials that can shield radiation. Thus, a shielding film was produced and its applicability as a radiation shielding material was evaluated. The radiation shielding film was manufactured by establishing the optimized conditions for each shielding material while controlling the applied voltage, roll driving speed, and gas supply amount to manufacture the shielding film. The adhesion between the parent material and the shielding metal thin film was confirmed by Cross-cut 100/100, and the stability of the thin film was confirmed through a hot water test for 1 hour to measure the change of the thin film over time. The shielding performance of the finally realized shielding film was measured by the Korea association for radiation application (KARA), and the test conditions (inverse wide beam, tube voltage 50 kV, half layer 1.828 mmAl) were set to obtain an attenuation ratio of 16.4 (initial value 0.300 mGy/s, measured value 0.018 mGy/s) and damping ratio 4.31 (initial value 0.300 mGy/s, measured value 0.069 mGy/s) were obtained. by securing process efficiency for future commercialization, light and shielding films and fabrics were used to lay the foundation for the application of films to radiation protective clothing or construction materials with shielding functions.

OZONE MEASUREMENTS IN THE STRATOSPHERE FROM KSR420S-1 AND -2 (과학 1, 2호 로켓 실험을 통한 성층권 오존량 측정)

  • Lee, K. Y.;Lee, D. H.;Kim, J.;Park, C. J.;Cho, H. K.
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.53-70
    • /
    • 1994
  • The Korean sounding rockets(KSR420S-1, -2) equipped with ozone detectors have b3en launched at An-heung, Chungchungnam-do, on June 4 and September 1, 1993, respectively. The ozone detector is used to measure the attenuation of solar UV radiation for various frequency bands in the stratosphere, to obtain vertical profiles of the ozone number density in the stratosphere. They confirm that the maximum ozone densities occur near 25 km, which is quite consistent with the mean value in the mid-latitude region. Our results from KSR420S-1 and -2 are compared with the other observation data from the Dobson spectrophotometer at Yonsei Univ., the LIDAR at Kyunghee Univ., the SBUV from Nimbus satellite, and the TOVS from NOAA satellite, which were performed simultaneously with the sounding rocket experiments.

  • PDF

Gamma-ray Dose Measurements in a Human Phantom Using Thermoluminescent Dosimeter

  • Yoo, Young-Soo;Lee, Hyun-Duk
    • Nuclear Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.239-247
    • /
    • 1974
  • A human phantom of polyethylene has been designed and sculptured for studying the effective radiation safety control. The phantom has the approximate size of the Korean adult and was sliced into thirty-five transverse slabs, 2.5 cm thick, The relative dose at the specified position was determined from the exposure that a TLD badge worn on the surface of the phantom body received from external ${\gamma}$-ray. The variation of the exposure as a function of depth in the phantom was measured for uncollimated ${\gamma}$-ray using TLD rods, and also isodose curves were obtained for the anatomical cross-section of the critical organs of the body. To simulate radiation exposure condition in the nuclear facility, measurements were made for given angles of incident ${\gamma}$-ray. The front to back attenuation factor for human phantom of thickness 20 cm was 0.439 for Cs$^{137}$ ${\gamma}$-ray which is in reasonable agreement with the published data.

  • PDF

Performance Comparison of Thermal Imagers with Uncooled and Cooled Detectors For Fire Fighting Application (비냉각형 적외선 센서를 이용한 열상시스템과 냉각형 적외선 센서를 이용한 열상시스템의 화재 진압 시 성능 비교)

  • Kim, Byung-Hyuk;Jung, Han;Kim, Young-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2007
  • Thermal Imaging systems are reported to be crucial for fire fighting and beginning to be used by fire fighters. The performance of thermal imaging system is determined by both the radiation of infrared from the target and the attenuation of infrared signal in the optical path by the absorption, scattering, diffraction and reflection. In the scene of fire, water drops with various sizes such as vaporized water, wafer mist from sprinkler, and wafer to suppress the fire reside with various gas generated by burning. To measure the transmission of infrared radiation in the scene of fire, fire simulating system and thermal imagers with cooled detector which detects $3{\sim}5{\mu}m$ infrared and uncooled detector fabricated by the MEMS technology which detects $8{\sim}12{\mu}m$ infrared. are made. With thermal imagers and Ire simulating system, the change of thermal image with respect to the change of visibility controlled with the burned fas was measured. It was found that the transmission of infrared was not reduced by the burned gas, which could be explained by the long wavelength of infrared ray compared with visible ray. However, the transmission of infrared ray was largely reduced by the combination of burned gas and water mist supplied by sprinkler. This is contrary to the results of calculated transmission through the pure water mist and shows that the transmission of infrared ray is mostly affected by the compounds of water mist and burned gas. In this case, it was found that the uncooled detector which detects $8{\sim}12{\mu}m$ infrared ray is better than cooled detector which detects $3{\sim}5{\mu}m$ infrared ray for fire fighting.