• Title/Summary/Keyword: radiated emissions

Search Result 33, Processing Time 0.026 seconds

Radiated emissions measurements by using conducted emissions measuring method

  • Yoon, Sang-Wook;Lee, Cheon-Hee;Kwack, Kae-Dal
    • Journal of Applied Reliability
    • /
    • v.9 no.3
    • /
    • pp.249-258
    • /
    • 2009
  • The measure of common-mode current on a cable can be closely correlate to the radiated emissions from the cable. This paper describes that to use the conducted emissions measurement method for calculating radiated emissions and compares them the measured radiated measurement results. For that the LISN which cover the radiated emissions frequency was developed.

  • PDF

Wideband Suppression of Radiated Emissions from a Power Bus in High-Speed Printed Circuit Boards

  • Shim, Yujeong;Kim, Myunghoi
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.184-190
    • /
    • 2016
  • We present experimental demonstrations of electromagnetic bandgap (EBG) structures for the wideband suppression of radiated emissions from a power bus in high-speed printed circuit boards (PCBs). In most of the PCB designs, a parallel plate waveguide (PPW) structure is employed for a power bus. This structure significantly produces the wideband-radiated emissions resulting from parallel plate modes. To suppress the parallel plate modes in the wideband frequency range, the power buses based on the electromagnetic bandgap structure with a defected ground structure (DGS) are presented. DGSs are applied to a metal plane that is connected to a rectangular EBG patch by using a via structure. The use of the DGS increases the characteristic impedance value of a unit cell, thereby substantially improving the suppression bandwidth of the radiated emissions. It is experimentally demonstrated that the DGS-EBG structure significantly mitigates the radiated emissions over the frequency range of 0.5 GHz to 2 GHz as compared to the PPW.

Study of Radiated Emissions from Common-Mode and Differential-Mode Currents (공통 모드와 차동 모드 전류로 부터 발생하는 방사성 방출에 대한 연구)

  • Zhang, Nan;Bae, Hyeon-Ju;Lee, June-Sang;Lee, Jae-Joong;Park, Young-Hak;Nah, Wan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1652-1653
    • /
    • 2011
  • This paper builds a printed circuit board to calculate the radiated emissions due to the common-mode and differential-mode currents. The calculated results agree with the measured values. Based on the calculated values, it is shown clearly that the common-mode radiations are the dominator of the radiated emissions from the device. The radiated emissions due to the common-mode currents can easily dominate the radiated emissions from the printed circuit board.

  • PDF

RF Compatibility Test Results of COMS satellite with Launch Vehicle (천리안위성의 발사체와의 전자파 적합성 시험결과 분석)

  • CHOI, Jae-Dong
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.215-217
    • /
    • 2010
  • This paper describes the test results of radiated compatibility with Ariane 5 launcher performed on the COMS Satellite test facility. Firstly, the Radiated Emission test results are analyzed in compliance with the Radiated Susceptibility requirement specification of Ariane 5 launcher. The satellite nominal operation is monitored during injection a radiated electric field corresponding to the launcher emissions levels in critical frequency ranges. And also, E-field are measured through a probe located at external units level in order to assess the EMC safety margin in Radiated mode.

  • PDF

A Study on the Electromagnetic Compatibility Evaluation of the Electronic Medical Instrumentation (전자의료기기의 전자파 적합성 평가에 관한 연구)

  • Song, C.G.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.418-421
    • /
    • 2002
  • The immunity testing in this study was performed to examine the conducted immunity and radiated immunity in medical instrumentation. Experiments were performed to assess the conducted emission and radiated emission of medical instrumentation such as MRI, ultrasound system, and electro surgical unit etc. The emission testing revolves around conducted emissions (high-frequency currents) on power lines and signal cables. Emission testing also looks at the output of energy through the air (called radiated emissions) and analyzes the strength of those radio-frequency signals generated unintentionally by the electrical medical device that is under test. Finally, this study would provide significant data for furture research or electromagnetic interference and compatibility test in medical instrumentation.

  • PDF

The EMI Suppression Technology for Radiated Emissions from PCB Traces (PCB 선로에서 복사되는 불요전자파를 억제하기 위한 기술)

  • 박이섭;이중근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1121-1127
    • /
    • 2000
  • Among many EMI suppression techniques for radiated emissions from PCB traces, image technique is adapted in this paper. A model for the analysis of the effect of image plane on the radiation of a microstrip trace is presented. After a simulation was carried out by using the FEM(Finite Element Method), field strength was measured with electric probe. The radiated emission levels were measured for various image plane width, separation distances, and their results show that the measured data are very close to those of simulation result. It proves that a proper use of image planes on the PCBs is very effective means of reducing EMI emissions on the PCBs.

  • PDF

New Approach to Reduce Radiated Emissions from Semiconductor by Using Absorbent Materials

  • Kim, Soo-Hyung;Moon, Kyoung-Sik
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.34-41
    • /
    • 2001
  • Semiconductors performing digital clocking are a main source of radiated emission noise. Therefore, the most secure method of reducing emission noise is to reduce emission radiated from semiconductors; an application of an absorber to the surface of semiconductors is one of these methods, too. However, in reality, it is difficult to achieve as much effect of noise reduction as expected by using only absorber. It is confirmed by experiment in this paper that a loop area within chip has no correlation with radiated emission noise and it is clarified why the existing absorber fails to achieve a satisfactory effect of emission noise reduction. Besides, a new type of chip coating absorber has been developed which can cover up to semiconductor out lead by using ferrite coating material of ferrite/epoxy acrylate substance using only permeability loss out of electromagnetic wave reduction characteristics of materials. As a result of evaluating radiated emission noise by applying this coating absorber to semiconductor device, it could be confirmed that emission noise decreased from about 3 ㏈ up to 20㏈ depending on frequency.

  • PDF

The Preliminary EMC Analysis Between the COMS RE and the GEO Launch Vehicles RS (통신해양기상위성 복사방출과 정지궤도 발사체 복사감응과의 전자파 적합성 해석)

  • Kim, Eui-Chan;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.774-778
    • /
    • 2010
  • In this paper, the preliminary EMC analysis process between the Communication, Ocean and Meteorological Satellite (COMS) and the Geostationary Earth Orbit (GEO) launch vehicles in the frequency range is described. The considered launch vehicles are Arian Ⅴ, Sea Launch, Land Launch, Atlas III&Ⅴ, Delta IV, Proton M/breeze M, Soyuz, H II-Aa. The launch vehicle Radiated Susceptibility (RS) specifications have been compared to COMS satellite Radiated Emission (RE) limits. The COMS Radiated Emission (RE) level is determined by calculating the radiated field equal to the quadratic sum of radiated emissions of each equipment switched "ON" during launch. As a result, The RS requirements of Arian V, Atlas III&V and Delta IV lauchers are compliant with COMS RE limits. The negative margins appear between the others launch vehicle RS (Sea Launch, Land Launch, Proton M/Breeze M, Soyuz and H II-A) and COMS RE. Then, if the launchers that have negative margin were chosen by the customer, The EMC tests should be performed at satellite level in order to demonstrate the compatibility with respect to launch vehicles requirements.

On the Problems of EMC Test Site and EMC Antennas (EMC 측정 시험장과 EMC 안테나에 관한 문제점)

  • Kim, Ki-Chai
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.1
    • /
    • pp.78-87
    • /
    • 2003
  • One of the most difficult and important problems associated with radiated electromagnetic emissions from digital devices are the determination of antenna factor and site acceptability of an open area test site. This paper presents the problems of the open area test site and EMC antennas far measuring electromagnetic interferences radiated from the equipements. It seems desirable that the antenna factor of EMC antennas be revised to the antenna factor with zero reflection presented in this paper for accurate measurements.

  • PDF

Calculation of the Radiated E-Field from PCB by spectral Domain Analysis. (파수영역법에 의한 PCB에서의 방사전계 계산)

  • 김동일;김형근;정세모
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.2
    • /
    • pp.61-66
    • /
    • 1999
  • It is being more and more difficult to suppress emissions from electronic products using PCB(Printed Circuit Board) to the limit. Therefore, the exact evaluation of the emission from PCB has been more important to reduce the required time and the cost at the design phase of the products, especially on board ship's equipments. This research has evaluated the emission radiated from PCB based on the theoretical approach of SDA(Spectral Domain Analysis), which is available to analyze microwave stripline, coplanar line, patch antenna, etc. According to the theoretical results, it has been clearly shown that the emission radiated from PCB is reduced as the thickness of PCB is thinner, the permittivity of PCB is higher, the length of stripline is shorter, and the frequency is lower.

  • PDF