• Title/Summary/Keyword: radial distribution systems

Search Result 136, Processing Time 0.024 seconds

Numerical and Experimental Study on Spray Atomization Characteristics of GDI Injector (직접 분사식 가솔린 기관 인젝터의 분무 미립화 특성에 대한 해석 및 실험적 연구)

  • Lee, C.S.;Rhyu, Y.;Kim, H.J.;Park, S.W.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.1-6
    • /
    • 2002
  • In this study numerical and experimental study on the spray atomization characteristics of a GDI injector is performed. To carry out numerical analysis, four hybrid models that are composed of conical sheet disintegration model, LISA model, DDB model, and RT model are used. The experimental results to evaluate the prediction accuracy of hybrid models are obtained by using phase Doppler particle analyzer and spray visualization system. It is shown that the prediction accuracy of hybrid model concerning spray developing process and spray tip penetration is good for all hybrid models, but the hybrid breakup models show different prediction of accuracy in the case of local radial SMD distribution.

  • PDF

Structural Transition of A-Type Zeolite: Molecular Dynamics Study

  • Song, Mee-Kyung;Chon, Hak-Ze
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.255-258
    • /
    • 1993
  • Molecular dynamics (MD) calculations were carried out in order to investigate the effect of MD cell size to predict the melting phenomena of A-type zeolite. We studied two model systems: a pseudocell of $(T_2O_4Na)_n$, (L= 12.264 $^{\AA}$, N= 84) and a true-cell of (SiAlO$_4Na)_n$. (L= 24.528 $^{\AA}$, N= 672), where T is Si or Al. The radial and bond angle distribution functions of T(Si, Al)-O-T(Si, Al) and diffusion coefficients of T and O were reported at various temperatures. For the true-cell model, the melting temperature is below 1500 K and probably around 1000 K, which is about 600-700 K lower than the pseudocell model. Although it took more time (about 30 times longer) to obtain the molecular trajectories of the true-cell model than those of the pseudocell model, the true-cell model gave more realistic structural transition for the A-type zeolite, which agrees with experiment.

Molecular Dynamics Simulation Studies of a Model System for Liquid Crystals Consisting of Rodlike Molecules in NPT Ensemble

  • Lee, Chang Jun;Sim, Hun Gu;Kim, Un Chun;Lee, Song Hui;Park, Hyeong Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.3
    • /
    • pp.310-316
    • /
    • 2000
  • Molecular dynamics simulation studies for thermotropic liquid crystalline systems conposed of rodlike molecules with 6 Lennard-Jones interaction sites wre performed in NPT ensemble. Within the range of temperature studied, the system exhibited isotropic and smectic phase. For the characterization of the smectic phase, we examined the structure of the liquid crystalline phase via the radial distribution function, its longitudinal and transverse components to the director, and other orientational correlation function, its longitudinal and transverse components to the director, and other orientational correlation functions. In the smectic A phase, our results showed a large anisotropy in translational motion (i.e.,$D_⊥ >> D_∥$), and the decay of the collective orientational correlation function of rank two became slower than that of the single particle orientational correlation function of rank one. Comments on the spontaneous growth of orientational order directly from the isotropic phase are given.

A Study on the Thickness Characteristics of the Liquid Sheet Formed by an Impinging Jet Onto a Wall (벽 충돌 제트로 생성되는 액막의 두께 분포 특성 연구)

  • J. S. Lee;T. Y. Lee;J. M. Jo;B. S. Kang
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.68-74
    • /
    • 2023
  • In this study, the thickness of the liquid sheet formed by a low speed impinging jet onto a wall was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The measurement results were compared with the theoretical predictions for two impinging jets. The wavy surface was observed for low viscosity water, but not for high viscosity glycerol solutions. The sheet thickness decreased as the circumferential angle or the distance from the impinging point increased. The sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions showed some differences from the measurement results.

A Study on the Characteristics of the Liquid Sheet Formed by a Splash Plate Nozzle at Low Jet Velocities (충돌벽 노즐의 저속 제트에 의한 액막 특성 연구)

  • H. U. Park;J. D. Kim;G. E. Song;B. S. Kang
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.75-82
    • /
    • 2024
  • In this study, the thickness of the liquid sheet formed by a splash plate nozzle at low jet velocities was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The wavy surface was observed for low viscosity water, but not for high viscosity glycerol solutions. The sheet thickness decreased as the circumferential angle or the distance from the impinging point increased. The sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions for two impinging jets showed some differences from the measurement results.

Sport injury diagnosis of players and equipment via the mathematical simulation on the NEMS sensors

  • Zishan Wen;Hanhua Zhong
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.201-215
    • /
    • 2024
  • The present research study emphasizes the utilization of mathematical simulation on a nanoelectromechanical systems (NEMS) sensor to facilitate the detection of injuries in players and equipment. Specifically, an investigation is conducted on the thermal buckling behavior of a small-scale truncated conical, cylindrical beam, which is fabricated using porous functionally graded (FG) material. The beam exhibits non-uniform characteristics in terms of porosity, thickness, and material distribution along both radial and axial directions. To assess the thermal buckling performance under various environmental heat conditions, classical and first-order nonlocal beam theories are employed. The governing equations for thermal stability are derived through the application of the energy technique and subsequently numerically solved using the extended differential quadratic technique (GDQM). The obtained results are comprehensively analyzed, taking into account the diverse range of effective parameters employed in this meticulous study.

2-dimensional Measurement of Arterial Pulse by Imaging Devices (촬상소자를 이용한 맥동의 2차원 계측)

  • Kim, Ki-Wang
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.12 no.2
    • /
    • pp.8-17
    • /
    • 2008
  • Objectives: For the traditional pulse diagnosis in Oriental Medicine, not only the pulse shape in time domain, but the width, length and depth of arterial pulse also should be measured. However, conventional pulse diagnostic systems have failed to measure the spatial parameters of the arterial pulse e.g. effective length of arterial pulse in the wrist. In fact, there are many ways to measure that kind of spatial features in arterial pulsation, but among them, the method using image sensor provides relatively cheap and simple way, therefore I tested feasibility of measuring 2-dimensional pressure distribution by imaging devices. Methods: Using widely used PC cameras and dotted balloons, the subtle oscillation of skin over the radial artery was recorded continuously, and then the displacement of every dot was calculated. Consequently, the time course of that displacements shows arterial pulse wave. Results: By the proposed method I could get pressure distribution map with 30Hz sampling rate, 21steps quantization resolution, and approximately 1mm spatial resolution. With reduced quantization resolution, $3cm{\times}4cm$ view angle could be achieved. Conclusion: Although this method has some limitations, it would be useful method for detecting 2-dimensional features of arterial pulse, and accordingly, this method provides a novel way to detect 'narrow pulse', 'wide pulse', 'long pulse', 'short pulse', and their derivatives.

  • PDF

Comparison of the Operational Speed of Hard-wired and IEC 61850 Standard-based Implementations of a Reverse Blocking Protection Scheme

  • Mnguni, Mkhululi Elvis Siyanda;Tzoneva, Raynitchka
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.740-754
    • /
    • 2015
  • This paper focuses on the reverse blocking busbar protection scheme with aim to improve the speed of its operation and at the same time to increase operational reliability, flexibility and stability of the protection during external and internal faults by implementation of the extended functionality provided by the IEC61850 standard-based protective Intelligent Electronic Devices (IEDs). The practical implementation of the scheme by the use of IEC 61850 standard communication protocol is investigated. The proposed scheme is designed for a radial type of a distribution network and is modeled and simulated in the DigSILENT software environment for various faults on the busbar and its outgoing feeders. A laboratory test bench is built using three ABB IEDs 670 series that are compliant with the IEC 61850 standard, CMC 356 Omicron test injection device, PC, MOXA switch, and a DC power supplier. Two types of the reverse blocking signals between the IEDs in the test bench are considered: hard wired and Ethernet communication by using IEC 61850 standard GOOSE messages. Comparative experimental study of the operational trip response speeds of the two implementations for various traffic conditions of the communication network shows that the performance of the protection scheme for the case of Ethernet IEC 61850 standard-based communication is better.

Effect of Injection Pressure of Water-in-Oil Emulsified Fuel on the Combustion Characteristics (유화연료의 분사압력이 연소특성에 미치는 영향)

  • Hwang, S.H.;Bae, H.H.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.38-45
    • /
    • 2003
  • This study was carried on the combustion characteristics of a pure light oil and emulsified fuels at high-pressure injection in a spray combustion installation, The volume fractions of water in an emulsion were varied up to 30% and the injection pressures were 7.5, 100, 200, and $300kg_f/cm^2$. The concentrations of NOx and the average temperatures of flame were measured. And Images of OH radical using ICCD camera and instantaneous schlieren photography of flames were photographed. It was found that the temperature distribution of axial distance in the emulsified fuels was increased in the upstream and decreased in the down stream. The temperature distribution of radial distance was high at the peripheral regions of the spray in the upstream and at the central regions of spray in the downstream, The intensity of OH radical was denser at the water content 10% than at the pure light oil over the injection pressure $200kg_f/cm^2$.

  • PDF

Comparision of Spray Angles of Pintle-Type Gasoline Injector with Different Measuring Methods (측정방법에 따른 핀틀형 가솔린 인젝터의 분무각 비교)

  • Kim, K.J.;Rhim, J.H.;No, S.Y.;Moon, B.S.;Kim, J.Y.;Kang, K.G.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.9-16
    • /
    • 1999
  • Spray angle, a parameter which is most commonly used to evaluate. spray distribution, is important because it affects the axial and radial distribution of the fuel. Spray angles were measured and compared for the pintle-type gasoline fuel injector with n-heptane as a test fuel with the three different measuring techniques, i.e. digital image processing, shadowgraphy and spray patternator, respectively. Fuel was injected with the injection pressures of 0.2-0.35MPa into the room temperature and atmospheric pressure environment. In digital image processing method, the transmittance level greatly influences the spray angle with the axial distance from the injector. From the experimental results by the shadowgraphy technique, it is obvious that the spray angle vary during the injection period. The results of spray angle from the spray patternator show that there exist the different spray angles in the different areas. The spray angles increase with the increase in the injection pressure for the three measurement techniques considered in this study. The spray angle is widely different, especially in the near region from the injector, according to the measurement techniques used in this experimental work.

  • PDF