• Title/Summary/Keyword: radial basis function neural networks

Search Result 142, Processing Time 0.027 seconds

A Study on Pattern Recognition Using Polynomial-based Radial Basis Function Neural Networks (다항식기반 RBF 신경회로망을 이용한 패턴인식에 대한 연구)

  • Ji, Kwang-Hee;Kim, Woong-Ki;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.387-389
    • /
    • 2009
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경 회로망을 설계하고 이를 패턴분류 문제에 적용하여 그 성능을 분석한다. 제안된 RBF 신경회로망은 입력층, 은닉층, 출력층으로 이루어진다. 입력층의 연결가중치는 1로서 입력층의 입력벡터는 그대로 은닉층으로 전달되고 은닉층은 FCM(Fuzzy C-means Clustering)방법을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습되어진다. 네트워크의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의한 퍼지추론의 결과로 얻어진다. 제안된 RBF 신경회로망은 여러 종류의 machine learning 데이터에 적용하여 패턴분류기로서의 성능을 평가받는다.

  • PDF

Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization (PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

Design of Incremental K-means Clustering-based Radial Basis Function Neural Networks Model (증분형 K-means 클러스터링 기반 방사형 기저함수 신경회로망 모델 설계)

  • Park, Sang-Beom;Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.833-842
    • /
    • 2017
  • In this study, the design methodology of radial basis function neural networks based on incremental K-means clustering is introduced for learning and processing the big data. If there is a lot of dataset to be trained, general clustering may not learn dataset due to the lack of memory capacity. However, the on-line processing of big data could be effectively realized through the parameters operation of recursive least square estimation as well as the sequential operation of incremental clustering algorithm. Radial basis function neural networks consist of condition part, conclusion part and aggregation part. In the condition part, incremental K-means clustering algorithms is used tweights of the conclusion part are given as linear function and parameters are calculated using recursive least squareo get the center points of data and find the fitness using gaussian function as the activation function. Connection s estimation. In the aggregation part, a final output is obtained by center of gravity method. Using machine learning data, performance index are shown and compared with other models. Also, the performance of the incremental K-means clustering based-RBFNNs is carried out by using PSO. This study demonstrates that the proposed model shows the superiority of algorithmic design from the viewpoint of on-line processing for big data.

On the Radial Basis Function Networks with the Basis Function of q-Normal Distribution

  • Eccyuya, Kotaro;Tanaka, Masaru
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.26-29
    • /
    • 2002
  • Radial Basis Function (RBF) networks is known as efficient method in classification problems and function approximation. The basis function of RBF networks is usual adopted normal distribution like the Gaussian function. The output of the Gaussian function has the maximum at the center and decrease as increase the distance from the center. For learning of neural network, the method treating the limited area of input space is sometimes more useful than the method treating the whole of input space. The q-normal distribution is the set of probability density function include the Gaussian function. In this paper, we introduce the RBF networks with the basis function of q-normal distribution and actually approximate a function using the RBF networks.

  • PDF

Servo-Writing Method using Feedback Error Learning Neural Networks for HDD (피드백 오차 학습 신경회로망을 이용한 하드디스크 서보정보 기록 방식)

  • Kim, Su-Hwan;Chung, Chung-Choo;Shim, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.699-701
    • /
    • 2004
  • This paper proposes the algorithm of servo- writing based on feedback error learning neural networks. The controller consists of feedback controller using PID and feedforward controller using gaussian radial basis function network. Because the RBFNs are trained by on-line rule, the controller has adaptation capability. The performance of the proposed controller is compared to that of conventional PID controller. Proposed algorithm shows better performance than PID controller.

  • PDF

A Robust Learning Algorithm for System Identification (외란을 포함한 학습 데이터에 강인한 시스템 모델링)

  • 한상현;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.200-200
    • /
    • 2000
  • Highly nonlinear dynamical systems are easily identified using neural networks. When disturbances are included in the learning data set Int system modeling, modeling process will be poorly performed. Since the radial basis functions in the radial basis function network(RBFN) are centered at the points specified by the weights, RBF networks are robust for approximating the process including the narrow-band disturbances deviating significantly from the regular signals. To exclude(filter) these disturbances, a robust algorithm for system identification, based on the RBFN, is proposed. The performance of system identification excluding disturbances is investigated and compared with the one including disturbances.

  • PDF

Evolutionary Design of Radial Basis Function-based Polynomial Neural Network with the aid of Information Granulation (정보 입자화를 통한 방사형 기저 함수 기반 다항식 신경 회로망의 진화론적 설계)

  • Park, Ho-Sung;Jin, Yong-Ha;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.862-870
    • /
    • 2011
  • In this paper, we introduce a new topology of Radial Basis Function-based Polynomial Neural Networks (RPNN) that is based on a genetically optimized multi-layer perceptron with Radial Polynomial Neurons (RPNs). This study offers a comprehensive design methodology involving mechanisms of optimization algorithms, especially Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization (PSO) algorithms. In contrast to the typical architectures encountered in Polynomial Neural Networks (PNNs), our main objective is to develop a design strategy of RPNNs as follows : (a) The architecture of the proposed network consists of Radial Polynomial Neurons (RPNs). In here, the RPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Fuzzy C-Means (FCM) clustering method. The RPN dwells on the concepts of a collection of radial basis function and the function-based nonlinear (polynomial) processing. (b) The PSO-based design procedure being applied at each layer of RPNN leads to the selection of preferred nodes of the network (RPNs) whose local characteristics (such as the number of input variables, a collection of the specific subset of input variables, the order of the polynomial, and the number of clusters as well as a fuzzification coefficient in the FCM clustering) can be easily adjusted. The performance of the RPNN is quantified through the experimentation where we use a number of modeling benchmarks - NOx emission process data of gas turbine power plant and learning machine data(Automobile Miles Per Gallon Data) already experimented with in fuzzy or neurofuzzy modeling. A comparative analysis reveals that the proposed RPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

Performance Improvement of Radial Basis Function Neural Networks Using Adaptive Feature Extraction (적응적 특징추출을 이용한 Radial Basis Function 신경망의 성능개선)

  • 조용현
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.3
    • /
    • pp.253-262
    • /
    • 2000
  • This paper proposes a new RBF neural network that determines the number and the center of hidden neurons based on the adaptive feature extraction for the input data. The principal component analysis is applied for extracting adaptively the features by reducing the dimension of the given input data. It can simultaneously achieve a superior property of both the principal component analysis by mapping input data into set of statistically independent features and the RBF neural networks. The proposed neural networks has been applied to classify the 200 breast cancer databases by 2-class. The simulation results shows that the proposed neural networks has better performances of the learning time and the classification for test data, in comparison with those using the k-means clustering algorithm. And it is affected less than the k-means clustering algorithm by the initial weight setting and the scope of the smoothing factor.

  • PDF

Classification and recognition of electrical tracking signal by means of LabVIEW (LabVIEW에 의한 Tracking 신호 분류 및 인식)

  • Kim, Dae-Bok;Kim, Jung-Tae;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.779-787
    • /
    • 2010
  • In this paper, We introduce electrical tracking generated from surface activity associated with flow of leakage current on insulator under wet and contaminated conditions and design electrical tracking pattern recognition system by using LabVIEW. We measure the leaking current of contaminated wire by using LabVIEW software and the NI-c-DAQ 9172 and NI-9239 hardware. As pattern recognition algorithm and optimization algorithm for electrical tracking system, neural networks, Radial Basis Function Neural Networks(RBFNNs) and particle swarm optimization are exploited. The designed electrical tracking recognition system consists of two parts such as the hardware part of electrical tracking generator, the NI-c-DAQ 9172 and NI-9239 hardware and the software part of LabVIEW block diagram, LabVIEW front panel and pattern recognition-related application software. The electrical tracking system decides whether electrical tracking generate or not on electrical wire.

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.