• Title/Summary/Keyword: radar detector

Search Result 80, Processing Time 0.031 seconds

Development of a New Vehicle Detector Combining CW Radar and Magnetometer Techniques (CW 레이다와 자계기술을 복합한 새로운 차량검지기 개발)

  • 정재영;김인석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.564-581
    • /
    • 1999
  • This paper introduces a new, small, low cost, robust and quick replaceable pavement-based vehicle detector using CW radar, magnetometer, and UHF small antennal techniques. The detector has been developed for a replacement of loop detectors having wide surface areas, for a more accurate operation under all weather conditions, and for no algorithmic change of the existing traffic information system. The detected vehicle information is sent by a small helical antenna embedded in a plastic material and received by a 5/8 $\lambda$ long GP antenna for signal processing. In a relatively good weather condition, the detector operates at 24 GHz. But in a heavy rain condition, magnetometer is activated by automatic switching.

  • PDF

광대역 고감도 DLVA 개발

  • 이두훈;김상진;김재연;조현룡;이정문;김상기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.39-52
    • /
    • 2000
  • A design of 2 stage S-DLVA(successive detector log video amplifier) was studied to detect wide dynamic radar pulse ranging from -70 ㏈m to 0㏈m. A basic design idea was focused on the linear detection in logarithmic scale of wide dynamic range radar pulses from nosie-like weak power of -70 ㏈m to relatively high power 0 ㏈m. It is highly formidable, since it requires high speed detection less than 10 nsec over the operating frequency ranges from 6 to 18 ㎓. A limiter diode, a tunnel diode and an L17-C were used as a protecting device, a detector diode and a log video amplifier in companion as a single stage detector to give voltage output proportional to the input power of about 35 ㏈ dynamic range. A protype of 2-stage DLVA having one more single stage detector was fabricated with a 32 ㏈ low noise amplifier and a 3 ㏈ hybrid coupler to provide total 70 ㏈ dynamic range detection. The logging characteristics were measured to have log slope of 25m.V/㏈ against 70 ㏈ logging range from -55 ㏈m to +15 ㏈m, the log linearity of within +/- 1.5 ㏈, and tangential sensitivity was at -63 ㏈m. The pulse dynamics of rise time and recovery time were measured as 50 nsec and 1.2 $\mu$sec, respectively. The reason might be due to the parasitic capacitances of packaged limiter, tunnel diode, and L17-C.

  • PDF

A Study on Optimizing the Clutter Rejection Capability for a High-Speed Scanning MTI-Pulse Radar (고속 스캔 MTI 펄스 레이더의 지형 클러터 제거 능력 최적화에 관한 연구)

  • Kim, Jong-Geon;Jang, Heon-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1077-1083
    • /
    • 2009
  • To reject the Doppler frequency spectrum dispersion of clutter caused by high-speed antenna rotation of MTI radar system due to terrain characteristics, signal processing parameters(MTI filter constant, M/N detector ration, K-factor and offset of CFAR) are adjusted for the optimal elimination of the ground clutter. For this investigation, logging equipment is designed and utilized for the collection of classified ground clutter data. Test case is devised through Matlab simulation for the classified analysis and optimization of clutter rejection. Then indoor radar test and outside test in accordance with terrain characteristics are repeatedly performed for the verification of the test. This whole process is through the evolutional development model and repeated for the optimization. Final result is that ground-clutter rejection capability is 5.6 times(7.5 dB) better than that of existing radar system.

Design of a W-band Radiometer Simultaneously Operating with a Single-Antenna Configured FMCW Radar (단일 안테나를 사용하는 FMCW 레이더와 동시 운용이 가능한 W-대역 레디오미터 설계)

  • Jung Myung-Suk;Kim Wan-Joo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.67-74
    • /
    • 2006
  • We present the design of a radiometer in W-band which operates simultaneously with a single antenna configured FMCW radar. We choose a total power radiometer(TPR) which shares an antenna and a front-end with the radar for miniaturizing the system. We separate the radiometer signal from the radar signal using a diplexer in IF band. Because the radiometer has an unwanted transmitter section due to the common use of the MMW front-end with the radar, some additional noise signals caused by the transmitter degrade the sensitivity of the radiometer system. To compensate the degradation of sensitivity, we use matching circuits and a diode detector configured as the voltage doubler. Through some experiments, we have verified that the designed radiometer system has good performances in detecting metal targets tying at several hundred meters.

Design and Fabrication of a W-band FMCW Radar for the Metal Target Detection Under the Ground Clutter Environment (지면 클러터 환경에서 금속표적감지를 위한 W-대역 FMCW 레이더의 설계 및 제작)

  • Park Jung-Dong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.93-100
    • /
    • 2004
  • In this paper, we describe the design, fabrication, and test results of a W-band FMCW radar for the metal target detection under the ground clutter environment. In order to detect metal targets on the ground, we used a single cassegrain antenna with the beamwidth of $1.45^{\circ}$ which forms pencil-beam footprint on the ground. A log envelope detector was applied to improve radar performance in the severe ground clutter known as Weibull and log normal clutter. The designed FMCW radar can acquire altitude information from the ground clutter with $\sigma_0=-23dB$ at the height of 160m. The fabricated W-band FMCW radar transmits 11 dBm power and the dynamic range of the receiver is from -106dBm to -30dBm. The performances of the fabricated sensors were tested out in the fields and detected a car target of 200m apart on the grass.

Signal Processing for Pulse Induction Metal Detector (자성센서 기반 지뢰탐지기를 위한 신호처리)

  • Shin, Beom-Su;Yang, DongWon;Jung, Byung-Min
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.532-538
    • /
    • 2018
  • This paper proposes an algorithm for signal processing which is used in pulse induction metal mine detectors. The detection power can be obtained from magnetic variation on the search coil. The calibration data should be made when there is no target because the detection power is difference between with and without a target. And it is also updated periodically because of surrounding various noises. Lastly, we keep a watch on the signal slope to identify exact position and signal power of mine detection.

GPR Development for Landmine Detection (지뢰탐지를 위한 GPR 시스템의 개발)

  • Sato, Motoyuki;Fujiwara, Jun;Feng, Xuan;Zhou, Zheng-Shu;Kobayashi, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.270-279
    • /
    • 2005
  • Under the research project supported by Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), we have conducted the development of GPR systems for landmine detection. Until 2005, we have finished development of two prototype GPR systems, namely ALIS (Advanced Landmine Imaging System) and SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar). ALIS is a novel landmine detection sensor system combined with a metal detector and GPR. This is a hand-held equipment, which has a sensor position tracking system, and can visualize the sensor output in real time. In order to achieve the sensor tracking system, ALIS needs only one CCD camera attached on the sensor handle. The CCD image is superimposed with the GPR and metal detector signal, and the detection and identification of buried targets is quite easy and reliable. Field evaluation test of ALIS was conducted in December 2004 in Afghanistan, and we demonstrated that it can detect buried antipersonnel landmines, and can also discriminate metal fragments from landmines. SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar) is a machine mounted sensor system composed of B GPR and a metal detector. The GPR employs an array antenna for advanced signal processing for better subsurface imaging. SAR-GPR combined with synthetic aperture radar algorithm, can suppress clutter and can image buried objects in strongly inhomogeneous material. SAR-GPR is a stepped frequency radar system, whose RF component is a newly developed compact vector network analyzers. The size of the system is 30cm x 30cm x 30 cm, composed from six Vivaldi antennas and three vector network analyzers. The weight of the system is 17 kg, and it can be mounted on a robotic arm on a small unmanned vehicle. The field test of this system was carried out in March 2005 in Japan.

Multi-Mode Radar System Model Design for Helicopter (헬기탑재 다중모드 레이다 시스템 모델 설계)

  • Kwag, Young-Kil;Bae, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.208-212
    • /
    • 2003
  • An airborne radar is an essential aviation electronic system of the helicopter to perform various missions in all-weather environments. This paper presents the conceptual design results of the multi-mode pulsed Doppler radar system testbed model for helicopter. Due to the inherent flight nature of the hovering vehicle which is flying in low-altitude and low speed, as well as rapid maneuvering, the moving clutters from the platform should be suppressed by using a special MTD (Moving Target Detector) processing. For the multi-mode radar system model design, the flight parameters of the moving helicopter platform were assumed: altitude of 3 Km, average cruising velocity of 150knots. The multi-mode operation capability was applied such as short-range, medium-range, and long-range depending on the mission of the vehicle. The nominal detection ranges is 30 Km for the testbed experimental model, but can be expanded up to 75 Km for the long range weather mode. The detection probability of each mode is also compared in terms of the signal-to noise ratio of each mode, and the designed radar system specifications ate provided as a design results.

  • PDF

Design and Implementation of RF Module Part for Radar Detector (레이더 탐지기용 RF 모듈단 설계 및 구현)

  • Roh, Hee-Chang;Park, Wook-Ki;Jo, Yun-Hyun;Oh, Taeck-Keun;Park, Hyo-Dal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.519-527
    • /
    • 2010
  • In this paper, we design and implement a broadband LNA(Low Noise Amplifier), a mixer, and oscillators in RF module part for radar detector. For resolving the limitation of the conventional product that the sensitivity is low due to the poor gain flatness, we propose the architecture of RF module part. The proposed RF module part is composed with a broadband 2-stage LNA, a mixer, and three oscillators, and improves the maximum gain and gain flatness for detecting various frequencies. The overall performances of RF module part are above 38 dB conversion gain in whole band and 1 dB gain flatness. These results show that the maximum gain which is the problem of the conventional product is improved 6 dB from 35 dB to 41 dB, and gain flatness is also improved 17 dB from 22 dB to 5 dB.