• Title/Summary/Keyword: radar and IR

Search Result 65, Processing Time 0.024 seconds

Design of Middleware Framework for Radar-based Intrusion Detection and Tracking (레이더 기반 침입 탐지 및 추적을 위한 미들웨어 프레임워크 설계)

  • Lee, Kyu-Ran;Jung, Ho;Kim, Tae-Ho;Maeng, Ji Chan;Ryu, Min-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1308-1310
    • /
    • 2011
  • 실내용 IR-UWB 레이더를 기반한 침입 탐지, 추적 시스템을 지원하기 위한 미들웨어 설계를 제안한다. 이 미들웨어의 설계는 다수의 측정 구역으로부터 받은 연속적인 데이터의 관리에 초점이 있다. 효율적인 데이터 관리를 위해 레이더 소프트웨어 플랫폼을 기능적으로 구분하여 설계하고 연동하였다.

Half-hourly Rainfall Monitoring over the Indochina Area from MTSAT Infrared Measurements: Development of Rain Estimation Algorithm using an Artificial Neural Network

  • Thu, Nguyen Vinh;Sohn, Byung-Ju
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.465-474
    • /
    • 2010
  • Real-time rainfall monitoring is of great practical importance over the highly populated Indochina area, which is prone to natural disasters, in particular in association with rainfall. With the goal of d etermining near real-time half-hourlyrain estimates from satellite, the three-layer, artificial neural networks (ANN) approach was used to train the brightness temperatures at 6.7, 11, and $12-{\mu}m$ channels of the Japanese geostationary satellite MTSAT against passive microwavebased rain rates from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and TRMM Precipitation Radar (PR) data for the June-September 2005 period. The developed model was applied to the MTSAT data for the June-September 2006 period. The results demonstrate that the developed algorithm is comparable to the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) results and can be used for flood monitoring across the Indochina area on a half-hourly time scale.

AUTOMATIC DETECTION Of NARROW OPEN WATER STREAMS IN AMAZON FORESTS FROM JERS-1 SAR IMAGERY

  • Amano, Takako-Sakurai;Iisaka, Joji;Kamiyama, Masataka;Takagi, Mikio
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.310-315
    • /
    • 1999
  • We extracted narrow open water streams from JERS-1 SAR images of the Amazon rain forest. The extracted range of these streams were almost comparable to a high level extraction of the same streams from near-IR images of JERS-1 VNIR data notwithstanding that these features in SAR images show the strong dependence of the observation angle. Large water bodies are relatively easy to extract from JERS-1 SAR images, as they tend to appear as very dark areas; but streams whose width is nearly equal to or less than the spatial resolution no longer appear as very dark features. By using strong scatterers distributed sparsely along the radar facing sides of the streams, we can successfully estimate approximate ranges of waterways and then extract relatively dark line-like features within these ranges.

  • PDF

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Thermal Characteristics Investigation of Space-borne Deployable Mesh Antenna according to the Mesh Weaving Density (OPI) (메쉬 제직 밀도(OPI)에 따른 우주용 전개형 메쉬 안테나의 열적 특성 분석)

  • Bong-Geon Chae;Hye-In Kim;Hyun-Kyu Baek;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2023
  • Recently, as Synthetic Aperture Radar (SAR), communication, and signal surveillance missions of spacecraft have become more advanced, research has been actively conducted on the deployable large mesh antenna system with excellent storage efficiency compared to the deployment area, and light weight. Deployable Mesh antennae are characterized by an increase in the number of Openings Per Inch (OPI), which is a measure of mesh weaving density as the mission frequency band increases, and this OPI change directly affects the thermal optical properties of the mesh antenna, so research on this is required. In this paper, to verify the thermal relationship between the optical properties of the mesh and antenna reflector, thermal sensitivity analysis between the mesh and the antenna reflector is performed by in-orbit thermal analysis with various optical characteristics of the mesh based on existing overseas research cases. In addition, the temperature gradient effect of the mesh reflector is analyzed.

A Method of ISAR Geometric Calibration for Point Target Using Impulse-Radio UWB (임펄스 초광대역 레이다를 이용한 점표적의 ISAR 기하 보정 방법)

  • Yu, Jiwoong;Nikitin, Konstantin;Paek, Inchan;Jang, Jong Hun;Ka, Min-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.397-403
    • /
    • 2015
  • In this paper, a method of ISAR geometric calibration is represented by using impulse-radio UWB radar. The ir-UWB is good for using a signal processing in time domain, so, it does not occur a multi-path or coupling problem. If a signal that between antennas and target is assumed a plane wave, a center of rotation in ISAR geometry model can be estimated by using point target. Before image is reconstructed with sinogram, the center of rotation can be calculated by using least square fitting. This method can be obtained a more contrast image, and a maximum value of entropy of image. The method, that estimates a center of rotation in received data, will be used a initial setup of instruments or a periodic compensation to reconstruct image. It would be useful in medical, security and surveillance imaging equipments that have a fixed geometry.

Modification and Installation Design of Airframe Structures for Performance Improved Aircraft (성능개량 항공기의 기체구조물 개조 및 장착설계)

  • Dae Han Bang;Hyeon Seok Lee;Min Soo Lee;Min Ho Lee;Jae Man Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.87-94
    • /
    • 2023
  • This paper addresses the installation and modification design of airframe structures for new and modified equipment installations that are essential for aircraft performance improvement. Typical performance improvement equipment mounted on the exterior of the aircraft include antenna, radar, electro-optical/infrared (EO/IR), and self-protection system equipment, which require structural reinforcement, modification, and mounting design of the green aircraft for operation. In the interior of the aircraft, console and rack structures are modified or added according to user operation requirements. In addition, this is accompanied by the installation design of equipment to be replaced and added for performance improvement, and the according modification of environmental control system components for internal cooling. The engineering process and cases in which airworthiness was verified through the detailed design of airframe structures with structural integrity, operability, and maintainability of performance-improved aircraft are presented.

A Study on Bond Wire Fusing Analysis of GaN Amplifier and Selection of Current Capacity Considering Transient Current (GaN증폭기의 본드 와이어 용융단선 현상분석과 과도전류를 고려한 전류용량 선정에 대한 연구)

  • Woo-Sung, Yoo;Yeon-Su, Seok;Kyu-Hyeok, Hwang;Ki-Jun, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.537-544
    • /
    • 2022
  • This paper analyzes the occurrence and cause of bond wires fusing used in the manufacture of pulsed high power amplifiers. Recently GaN HEMT has been spotlight in the fields of electronic warfare, radar, base station and satellite communication. In order to produce the maximum output power, which is the main performance of the high-power amplifier, optimal impedance matching is required. And the material, diameter and number of bond wires must be determined in consideration of not only the rated current but also the heat generated by the transient current. In particular, it was confirmed that compound semiconductor with a wide energy band gap such as GaN trigger fusing of the bond wire due to an increase in thermal resistance when the design efficiency is low or the heat dissipation is insufficient. This data has been simulated for exothermic conditions, and it is expected to be used as a reference for applications using GaN devices as verified through IR microscope.

Counting and Localizing Occupants using IR-UWB Radar and Machine Learning

  • Ji, Geonwoo;Lee, Changwon;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • Localization systems can be used with various circumstances like measuring population movement and rescue technology, even in security technology (like infiltration detection system). Vision sensors such as camera often used for localization is susceptible with light and temperature, and can cause invasion of privacy. In this paper, we used ultra-wideband radar technology (which is not limited by aforementioned problems) and machine learning techniques to measure the number and location of occupants in other indoor spaces behind the wall. We used four different algorithms and compared their results, including extremely randomized tree for four different situations; detect the number of occupants in a classroom, split the classroom into 28 locations and check the position of occupant, select one out of the 28 locations, divide it into 16 fine-grained locations, and check the position of occupant, and checking the positions of two occupants (existing in different locations). Overall, four algorithms showed good results and we verified that detecting the number and location of occupants are possible with high accuracy using machine learning. Also we have considered the possibility of service expansion using the oneM2M standard platform and expect to develop more service and products if this technology is used in various fields.

Development of Proto-type Program for Automatic Change Detection and Cueing of Multi-temporal KOMPSAT-5 SAR Imagery (다중시기 KOMPSAT-5 SAR 위성영상의 자동변화탐지알림 프로토타입 프로그램 개발)

  • Chae, Sung-Ho;Oh, Kwan-Young;Lee, Sungu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1955-1969
    • /
    • 2022
  • Most of the public and private users who use national satellite information such as the KOMPSAT series mainly use Electro-Optical and Infrared (EO/IR) satellite images, and the utilization of Synthetic Aperture Radar (SAR) images is relatively insufficient. As KOMPSAT-5 currently in operation, KOMPSAT-6 and micro SAR satellite constellation systems are scheduled to be launched in the future, the demand for utilization of SAR satellite information is increasing in various fields. Accordingly, it is necessary to possess core technology for SAR utilization that can support the utilization of SAR satellite information for users. Due to the all-weather properties of SAR system, change detection technology is a key application technology. However, until now, the development of technology that automatic change detection and cueing using SAR images is insufficient. Through this study, the requirements of automatic change detection and cueing function using multi-temporal KOMPSAT-5 SAR satellite images were derived and a prototype program was developed. This prototype program aims to secure independent SAR utilization technology and promote the utilization of domestic SAR satellite information by practitioners in public sector organizations in Korea.