• Title/Summary/Keyword: radar

Search Result 4,012, Processing Time 0.044 seconds

A Study on the RCS Enhancement Method of Passive RADAR Reflector Through Shaping (형상을 통한 수동형 레이더 리프렉터의 RCS 증대방법 연구)

  • 임정빈;김우숙;안영섭;김인현;박성현;김창경;심영호;김봉석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.161-176
    • /
    • 2002
  • Collision avoidance is the most important part of a small vessel. Small and mediurn sized ships are surprisingly poor targets for radar reflection and are frequently in danger of being overrun by large vessels, even under good condition of visibility. One of the best way to prevent collisions at sea is to use as large and well designed a radar reflector. Thus, RCS(Radar Cross Section) increase is key element in the design of radar reflector. Radar Reflectors are normally classified into active-type and passive-type. In this paper, the RCS increase methods for passive-type reflector through shaping are explained, and analyzed with RCS performance test by computer simulation. As results from analysis, It is shown that the effective diameter of radar reflector is over 10 λ to provide a return above the threshold RCS of 25m$^2$, lower limit of detectability using X-band radar in a moderate sea.

  • PDF

Combined Microwave Radiometer and Micro Rain Radar for Analysis of Cloud Liquid Water

  • Yang, Ha-Young;Chang, Ki-Ho;Kang, Seong-Tae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.12-15
    • /
    • 2013
  • To combine the micro rain radar and microwave radiometer cloud liquid water, we estimate the cloud physical thickness from the difference between the MTSAT-1R cloud top height and cloud base height of visual observation of Daegwallyeong weather station, and the cloud liquid water path of micro rain radar is obtained by multiplying the liquid water content of micro rain radar and the estimated cloud physical thickness. The trend of microwave radiometer liquid water path agrees with that of the micro rain radar during small precipitation. We study these characteristics of micro rain radar and microwave radiometer for small precipitation to obtain the combined cloud water content of micro rain radar and microwave radiometer, constantly operated regardless to the rainfall.

Antipersonnel Landmine Detection Using Ground Penetrating Radar

  • Shrestha, Shanker-Man;Arai, Ikuo;Tomizawa, Yoshiyuki;Gotoh, Shinji
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1064-1066
    • /
    • 2003
  • In this paper, ground penetrating radar (GPR), which has the capability to detect non metal and plastic mines, is proposed to detect and discriminate antipersonnel (AP) landmines. The time domain GPR - Impulse radar and frequency domain GPR - SFCW (Stepped Frequency Continuous Wave) radar is utilized for metal and non-metal landmine detection and its performance is investigated. Since signal processing is vital for target reorganization and clutter rejection, we implemented the MUSIC (Multiple Signal Classification) algorithm for the signal processing of SFCW radar data and SAR (Synthetic Aperture Radar) processing method for the signal processing of Impulse radar data.

  • PDF

Impacts of temporal dependent errors in radar rainfall estimate for rainfall-runoff simulation

  • Ko, Dasang;Park, Taewoong;Lee, Taesam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.180-180
    • /
    • 2015
  • Weather radar has been widely used in measuring precipitation and discharge and predicting flood risks. The radar rainfall estimate has one of the essential problems in terms of uncertainty and accuracy. Previous study analyzed radar errors to reduce its uncertainty or to improve its accuracy. Furthermore, a recent analyzed the effect of radar error on rainfall-runoff using spatial error model (SEM). SEM appropriately reproduced radar error including spatial correlation. Since the SEM does not take the time dependence into account, its time variability was not properly investigated. Therefore, in the current study, we extend the SEM including time dependence as well as spatial dependence, named after Spatial-Temporal Error Model (STEM). Radar rainfall events generated with STEM were tested so that the peak runoff from the response of a basin could be investigated according to dependent error. The Nam River basin, South Korea, was employed to illustrate the effects of STEM on runoff peak flow.

  • PDF

A Study on Radar Absorbing Structure for Aircraft (항공기용 전파흡수 구조 연구)

  • Han, Won-Jae;Jang, Byung-Wook;Park, Jung-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.24-28
    • /
    • 2010
  • The purpose of this study is to define available microwave absorbing structure for aircraft from in the X-band(8.2~12.4GHz) frequencies. The electromagnetic wave absorption or shielding techniques is an important issue not only for military purpose but also for commercial purposes. Aircraft Radar Absorbing Structure(RAS) is absorbed or scattered propagation waves from the enemy radar. There are absorbing technologies at shaping design techniques and using Radar Absorbing Materials(RAM). RAM is more important because shaping design can't include perfect radar absorbing performance. In this study, based on material properties was introduced RAM and to analyze the each characteristics. Finally, we comparison appropriate RAM for aircraft.

  • PDF

Effect of CAPPI Structure on the Perfomance of Radar Quantitative Precipitation Estimation using Long Short-Term Memory Networks

  • Dinh, Thi-Linh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.133-133
    • /
    • 2021
  • The performance of radar Quantitative Precipitation Estimation (QPE) using Long Short-Term Memory (LSTM) networks in hydrological applications depends on either the quality of data or the three-dimensional CAPPI structure from the weather radar. While radar data quality is controlled and enhanced by the more and more modern radar systems, the effect of CAPPI structure still has not yet fully investigated. In this study, three typical and important types of CAPPI structure including inverse-pyramid, cubic of grids 3x3, cubic of grids 4x4 are investigated to evaluate the effect of CAPPI structures on the performance of radar QPE using LSTM networks. The investigation results figure out that the cubic of grids 4x4 of CAPPI structure shows the best performance in rainfall estimation using the LSTM networks approach. This study give us the precious experiences in radar QPE works applying LSTM networks approach in particular and deep-learning approach in general.

  • PDF

A Study on Continuous long-term Wave Observation using Remote Monitoring System (원격모니터링을 이용한 연속파랑관측에 관한 연구)

  • Shin, Bumshick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.654-659
    • /
    • 2018
  • In this study, continuous long-term observation is implemented with an ocean radar. Ocean radar conducts remote observation (combined) with ground-based radars, which enable a series of simultaneous observations of an extensive range of the coast with high frequency. An ocean radar for continuous long-term observation is operated at Samcheok on the east coast of Korea. Samcheok experienced tsunami damage in recent years and is the location of a nuclear power plant. In order to examine the reliability of the ocean radar, a pressure-type wave gauge, ultrasonic wave gauge, and ocean buoy are installed for the purpose of data comparison and verification. The ocean radar used in this study is an array-type HF-RADAR named WERA (WavE RAdar). The analysis of the data obtained from continuous long-term observations showed that the radar observations were in agreement with more than 90% of the wave data collected within a 25 km range from the center of two sites. Less than 1% of the entire observation data was unmeasured by the time series analysis. As a result of comparing the radar data with the direct observations made by the wave gauge, it was inferred that the RMS deviation is less than 20cm and the correlation coefficient was in the range of 0.84 ~ 0.87. Moreover, supported by such observations, a comprehensive monitoring system is being developed to provide the public with real-time reports on waves and currents via the internet.

Interference Impact Analysis of Ground Based Radar from Spaceborne High Resolution Synthetic Aperture Radar (고해상도 위성 탑재 영상 레이다(SAR)의 지상 레이다에 미치는 간섭 영향 분석)

  • Song, Woo-Jin;Woo, Sung-Chul;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.663-668
    • /
    • 2008
  • Recently, World Radio Conference(WRC)-2007 approved the ultrawide bandwidth of 500 MHz for the use of spaceborne synthetic aperture radar in X-band for the EESS(Earth Exploration Satellite Service) in order to improve the SAR imaging resolution. It is concerned about the interference impact from the spaceborne SAR that may cause to most of ground radars due to the extended ultra wideband. In this paper, in order to predict the interference impact of the ground-based radar from the spaceborne radar, radar interference model is presented using radar characteristic parameters by taking into account the operating environments of the spaceborne and ground based radar in the time, space, and spectrum domains. Using the spaceborne SAR model of TerraSAR-X and ground radar model of meteorological radar recommended by ITU-R, the interference impact was assessed through the computer simulation to see the possible interference impact of the ground based radar operating in the Korean peninsula.

A Study on Radar Signal Model for Calculation of RCS Using MUSIC Algorithm (레이더 반사단면적 계산을 위한 레이더 신호모델에 관한 연구)

  • Jeong Junng-Sik;Pang Tian-Ting;Jong Jae-Yong;Kim Chul-Seung;Yang Won-Jae;Ahn Young-Sup
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.75-78
    • /
    • 2005
  • The detectability of radar depends on RCS(radar cross section). The RCS for complex radar targets may be only approximately calculated by using low-frequency or high-frequency scattering methods, while the RCS for simple radar targets can be exactly obtained by applying on eigen-function method. However, the conventional methods for calculation of RCS are computationally complex. We propose an radar signal model for RCS calculation by MUSIC algorithm In this research, it is assumed that the radar target is considered as a ring of scatterers. The amplitudes of scatterers may be statistically distributed. As the result, the radar signal model is proposed to use MUSIC, and the RCS is calculated by a simple linear algebraic method.

  • PDF

Study on Class Separability Measure for Radar Signals (레이다 신호의 클래스 분리도 측정을 위한 연구)

  • Jeong, Seong-Jae;Lee, Seung-Jae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.2
    • /
    • pp.128-137
    • /
    • 2018
  • In this paper, we propose a novel class separability measure for radar signals. To reduce the sensitivity of the relative aspect angle between a target and radar, to evaluate the discriminatory power of radar signals, the proposed method first calculates the correlation coefficients between two radar cross sections (RCSs) or linearly shifts one-dimensional (1D) radar signals (i.e., high-resolution range profiles (HRRPs)), or rotates two 2D radar signals (i.e., inverse synthetic aperture radar (ISAR) images). Then, it uses the maximum correlation coefficient when two radar signals are best aligned. Next, the proposed method obtains new correlation-based discriminant matrices (CDM) using maximum correlation coefficients. Finally, the cumulative distribution function (CDF) in the CDM and the value corresponding to the specific probability in the CDF are obtained, and this value represents the discriminatory power of the radar signal. Experimental results show that the proposed method can accurately measure the target separability.