• Title/Summary/Keyword: raclopride

Search Result 26, Processing Time 0.029 seconds

Synaptic Concentration of Dopamine in Rat Striatal Slices in Relationship to $[^3H]$Raclopride Binding to the Dopamine $D_2$ Receptor

  • Park, Mi-Hwa;Park, Eun-Hee
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.360-366
    • /
    • 2000
  • The in vivo binding of dopamine (DA) radioligands to $D_2$receptors can be affected by competition with endogenous dopamine. In the present study, we used a brain slice preparation that provides more controlled conditions than in vivo preparations in order to examine the relationship between synaptic DA and the binding of [$^3H$] raclopride to $D_2$receptors. We also estimated the synaptic DA concentration in rat striatal slices by determining the changes in [$^3H$] raclopride binding. To correlate the changes in [$^3$H]raclopride binding with the concentration of synaptic DA, the kinetic parameters were determined. [$^3H$] Raclopride reached equilibrium binding conditions within two hours. The K value for DA in inhibiting [$^3$H]raclopride binding was about 2.2 nM. The increase in synaptic DA evoked by electrical stimulation decreased the striatal binding of [$^3H$] raclopride in a frequency-dependent manner. Increases in the DA concentration evoked by amphetamine (AMPH) or cocaine decreased [$^3H$] raclopride binding by 74% or 20%, respectively, corresponding to increases in the synaptic DA concentrations of 1.6 nM or 0.6 nM, respectively. Pargyline also decreased [$^3H$] raclopride binding by 36%corresponding at a concentration of 1.2 nM. In contrast, the depletion of synaptic DA by $\alpha$-methyl-p-tyrosine ($\alpha$-MpT) increased the specific binding of [$^3H$] raclopride by 43%when the DA concentration was decreased to 0.7 nM. The changes in the DA concentration at the synapse were responsible for the changes in the striatal binding of [$^3H$] raclopride. The values calculated in this study may therefore approximate the changes in the synaptic DA concentration in rat striatal slices following manipulation.

  • PDF

Renal Action of Raclopride, a Dopamine $D_2$ Receptor Antagonist, in Dogs (Dopamine $D_2$ Receptor 차단제인 Raclopride의 신장작용)

  • 고석태
    • YAKHAK HOEJI
    • /
    • v.45 no.6
    • /
    • pp.683-693
    • /
    • 2001
  • This study was attempted to investigate the effect of raclopride, a dopamine $D_2$ receptor antagonist, on renal function in dog. Raclopride (70-220$\mu\textrm{g}$/kg), when given intravenously, Produced antidiuresis along with the decrease in free water clearance ( $C_{H_2O}$), urinary excretion of sodium and potassium ( $E_{Na}$ , $E_{K}$), partially decreased osmolar clearance ( $C_{osm}$) and increased reabsorption rates of sodium and potassium in renal tubules ( $R_{Na}$ , $R_{K}$). Raclopride administered into a renal artery did not influence on renal function in small doses (10 and 30$\mu\textrm{g}$/kg), whereas exhibited the decrease of urine volume (Vol) and $C_{H_2O}$ both in experimental and control kidney in much dose (100$\mu\textrm{g}$/kg), at this time, the decreased rates of both Vol. and $C_{H_2O}$) were more prominent in control kidney rather than that elicited in experimental kidney, and then only via was decreased in control kidney but increased in experimental kidney. Raclopride administered via carotid artery (30-200$\mu\textrm{g}$/kg) did not influence at all on renal function. Antidiuretic action induced by raclopride given intravenously was not affected by renal denervation. Raclopride given into carotid artery was little effect on renal function without relation to renal denervation. Above results suggest that raclopride produces antidiuresis by potentiation of antidiuretic hormone (ADH) action in blood without increase of ADH secretion in posterior pituitary gland, it is not related to renal nerve function in dogs.ogs.s.

  • PDF

Smoking-Induced Dopamine Release Studied with $[^{11}C]Raclopride$ PET ($[^{11}C]Raclopride$ PET을 이용한 흡연에 의한 도파민 유리 영상 연구)

  • Kim, Yu-Kyeong;Cho, Sang-Soo;Lee, Do-Hoon;Ryu, Hye-Jung;Lee, Eun-Ju;Ryu, Chang-Hung;Jeong, In-Soon;Hong, Soo-Kyung;Lee, Jae-Sung;Seo, Hong-Gwan;Jeong, Jae-Min;Lee, Won-Woo;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.421-429
    • /
    • 2005
  • Purpose: It has been postulated that dopamine release in the striatum underlies the reinforcing properties of nicotine. Substantial evidence in the animal studies demonstrates that nicotine interacts with dopaminergic neuron and regulates the activation of the dopaminergic system. The aim of this study was to visualize the dopamine release by smoking in human brain using PET scan with $[^{11}C]raclopride$. Materials and Methods: Five male non-smokers or ex-smokers with an abstinence period longer than 1 year (mean age of $24.4{\pm}1.7$ years) were enrolled in this study $[^{11}C]raclopride$, a dopamine D2 receptor radioligand, was administrated with bolus-plus-constant infusion. Dynamic PET was performed during 120 minutes ($3{\times}20s,\;2{\times}60s,\;2{\times}120s,\;1{\times}180s\;and\;22{\times}300s$). following the 50 minute-scanning, subjects smoked a cigarette containing 1 mg of nicotine while in the scanner. Blood samples for the measurement of plasma nicotine level were collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, and 90 minute after smoking. Regions for striatal structures were drawn on the coronal summed PET images guided with co-registered MRI. Binding potential, calculated as (striatal-cerebellar)/cerebellar activity, was measured under equilibrium condition at baseline and smoking session. Results: The mean decrease in binding potential of $[^{11}C]raclopride$ between the baseline and smoking in caudate head, anterior putamen and ventral striatum was 4.7%, 4.0% and 7.8%, respectively. This indicated the striatal dopamine release by smoking. Of these, the reduction in binding potential in the ventral striatum was significantly correlated with the cumulated plasma level of the nicotine (Spearman's rho=0.9, p=0.04). Conclusion: These data demonstrate that in vivo imaging with $[^{11}C]raclopride$ PET could measure nicotine-induced dopamine release in the human brain, which has a significant positive correlation with the amount or nicotine administered bt smoking.

R-(-)-TNPA, a Dopaminergic $D_2$ Receptor Agonist, Inhibits Catecholamine Release from the Rat Adrenal Medulla

  • Hong, Soon-Pyo;Seo, Hong-Joo;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.273-282
    • /
    • 2006
  • The aim of the present study was to investigate the effects of R-(-)-2,10,11-trihydroxy-N-propylnoraporphine [R-(-)-TNPA], a selective agonist of dopaminergic $D_2$ receptor and S(-)-raclopride, a selective antagonist of dopaminergic $D_2$ receptor, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused model of the rat adrenal gland, and also to establish its mechanism of action. R-(-)-TNPA $(10{\sim}100\;{\mu}M)$ perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP $(100\;{\mu}M)$ and McN-A-343 $(100\;{\mu}M)$. R-(-)-TNPA itself did also fail to affect basal CA output. Also, in adrenal glands loaded with R-(-)-TNPA $(30\;{\mu}M)$, the CA secretory responses evoked by Bay-K-8644 $(10\;{\mu}M)$, an activator of L-type $Ca^2+$ channels and cyclopiazonic acid $(10\;{\mu}M)$, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$ were also inhibited. However, S(-)-raclopride $(1{\sim}10\;{\mu}M)$, given into an adrenal vein for 60 min, enhanced the CA secretory responses evoked by ACh, high $K^+$, DMPP and McN-A-343 only for the first period (4 min), although it alone has weak effect on CA secretion. Moreover, S(-)-raclopride $(3.0\;{\mu}M)$ in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644 and cyclopiazonic acid only for the first period (4 min). However, after simultaneous perfusion of R-(-)-TNP A $(30\;{\mu}M)$ and S(-)-raclopride $(3.0\;{\mu}M)$, the inhibitory responses of R(-)-TNPA $(30\;{\mu}M)$ on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Taken together, these experimental results suggest that R-(-)-TNPA greatly inhibits the CA secretion from the perfused rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization, but S(-)-raclopride rather enhances the CA release by them. It seems that this inhibitory of R-(-)-TNPA may be mediated by stimulation of inhibitory dopaminergic $D_2$ receptors located on the rat adrenomedullary chromaffin cells, while the facilitatory effect of S(-)-raclopride is due to the blockade of dopaminergic $D_2$ receptors, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that dopaminergic $D_2$ receptors may be involved in regulation of CA release in the rat adrenal medulla.

Methodological approaches for the clinical routine production of [11C]raclopride

  • Cheong, Il-koo;Lee, Jihye;Lee, Sang-Yoon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.1
    • /
    • pp.15-17
    • /
    • 2017
  • In carbon-11 labeling, $[^{11}C]$methyltriflate (methyltrifluoromethanesulfonate, MeOTf) is the most widely used through mild reaction condition with high yield. Strong inorganic bases, KOH, NaH and so on, were chosen to activate precursors that have phenolic alcohol as a nucleophilic moiety, because of its poor nucleophilicity. However, these catalyst can also react with radioactive intermediate, $[^{11}C]$MeOTf to afford side products. We will briefly discuss the history of the effort to increase the yield of $[^{11}C]$raclopride and suggest the alternate method for better radiochemical yield and consistency.

Mechanism of Central Antidiuretic Action Induced by TNPA, Dopamine $D_2$Receptor Agonist, in Dogs (Dopamine $D_2$Receptor 효능제인 TNPA의 중추적 항이뇨작용 기전)

  • 고석태;황명성
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.397-406
    • /
    • 2001
  • It has been demonstrated previously that R(-)-2,10,11-trihydroxy-N-n-propylnora porphine (TNPA), a dopamine D$_2$receptor agonist, produced the antidiuresis through changes of central friction in dog. This study was investigated about effects of renal denervation and raclopride, a dopamine D$_2$receptor antagonist, on the antidiuresis of TNPA in order to elicidate the mechanism involved in this central antidiuresis induced by TNPA. Antidiresis exhibited by TNPA given into the vein or into carotid artery was not influenced by renal denervation, whereas antidiuresis of TNPA administered into carotid artery was blocked almost perfectly by raclopride pretreated into carotid artery. From these observations it is concluded that central antidiuresis induced by TNPA is brought about through activation of dopamine D$_2$receptor localized in brain, not related to renal nerve activity.

  • PDF

Roles of Dopaminergic $D_1\;and\;D_2$ Receptors in Catecholamine Release from the Rat Adrenal Medulla

  • Baek, Young-Joo;Seo, Yoo-Seong;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • The aim of the present study was designed to establish comparatively the inhibitory effects of $D_1$-like and $D_2$-like dopaminergic receptor agonists, SKF81297 and R(-)-TNPA on the release of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused model of the rat adrenal medulla. SKF81297 $(30{\mu}M)$ and R-(-)-TNPA $(30{\mu}M)$ perfused into an adrenal vein for 60 min, produced great inhibition in the CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M)$, DMPP $(10^{-4}\;M)$, McN-A-343 $(10^{-4}\;M)$, high $K^+$ $(5.6{\times}10^{-2}\;M)$, Bay-K-8644 $(10{\mu}M)$, and cyclopiazonic acid $(10{\mu}M)$, respectively. For the release of CA evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid, the following rank order of inhibitory potency was obtained: SKF81297>R-(-)-TNPA. However, R(+)-SCH23390, a selectve $D_1$-like dopaminergic receptor antagonist, and S(-)-raclopride, a selectve $D_2$-like dopaminergic receptor antagonist, enhanced the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid only for $0{\sim}4$ min. The rank order for the enhancement of CA release evoked by high $K^+$, McN-A-343 and cyclopiazonic acid was R(+)-SCH23390>S(-)-raclopride. Also, the rank order for ACh, DMPP and Bay-K-8644 was S(-)-raclopride > R(+)-SCH23390. Taken together, these results demonstrate that both SKF81297 and R-(-)-TNPA inhibit the CA release evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors and the membrane depolarization from the isolated perfused rat adrenal gland without affecting the basal release, respectively, but both R(+)-SCH23390 and S(-)-raclopride facilitate the CA release evoked by them. It seems likely that the inhibitory effects of SKF81297 and R-(-)-TNPA are mediated by the activation of $D_1$-like and $D_2$-like dopaminergic receptors located on the rat adrenomedullary chromaffin cells, respectively, whereas the facilitatory effects of R(+)-SCH23390 and S(-)-raclopride are mediated by the blockade of $D_1$-like and $D_2$-like dopaminergic receptors, respectively: this action is possibly associated with extra- and intracellular calcium mobilization. Based on these results, it is thought that the presence of dopaminergic $D_1$ receptors may play an important role in regulation of the rat adrenomedullary CA secretion, in addition to well-known dopaminergic $D_2$ receptors.

Effect of Dopamine, SKF 81297, a Dopamine D$_1$-Receptor Agonist and TNPA, a Dopamine D$_2$-Receptor Agoinst on the Blood Pressure in Rats (Dopamine, Dopamine D$_1$-Receptor 효능제인 SKF 81297 및 Dopamine, D$_2$-Receptor 효능제인 TNPA의 흰쥐 혈압에 대한 영향)

  • Ko, Suk-Tai;Lim, Dong-Yoon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.97-97
    • /
    • 2001
  • This Study was attempted to investigate tile effect of dopamine, SKF 81297, a dopamine D$_1$-receptor agonist, and TNPA, a dopamine D$_2$-receptor agonist, on the blood pressure in rat. Dopamine exhibited the hypertensive action in proportion to the doses of 1.0, 3.0 arid 10.0 $\mu\textrm{g}$/kg i.v., these hypertensive action of dopamine was blocked significantly by SCH 23390, a dopamine D$_1$-receptor antagonist, on the other hand, more potentiated by raclopride, a dopamine D$_1$-receptor antagonist. SKF 81297 produced hypertensive action in a dose of 1.0 $\mu\textrm{g}$/kg i.v., wherease hypotensive action in proportion to administered doses 3.0 and 10.0 $\mu\textrm{g}$/kg i.v., these hypertensive action of SKF 81297 in a dose of 1.0 $\mu\textrm{g}$/kg i.v. was not influenced by SCH 23390 or raclopride, but hypotensive action of SKF 81297 in tile doses of 3.0 and 10.0 $\mu\textrm{g}$/kg i.v. was weakened significantly by SCH 23390, but more strenthened by raclopride. TNPA showed the hypotensive action in inverse proportion to administered doses of 1.0, 3.0 and 10.0 $\mu\textrm{g}$/kg i.v., these hypotensive action was reversed to hypertensive action in inverse proportion to the administered doses of TNPA by SCH 23390 and raclopride.

  • PDF