• Title/Summary/Keyword: rack displacement

Search Result 19, Processing Time 0.02 seconds

Co-Simulation Technology Development with Electric Power Steering System and Full Vehicle (전동 조향 장치와 차량의 동시 시뮬레이션 기술 개발)

  • 장봉춘;소상균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.94-100
    • /
    • 2004
  • Most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the electric power system has been developed and become widely equipped in passenger vehicles. In this research the simulation integration technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. A full vehicle model interacted with electronic control unit algorithm is concurrently simulated with an impulsive steering wheel torque input. The dynamic responses of vehicle chassis and steering system are evaluated. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

Simulation Integration Technique of a Full Vehicle Equipped with EPS Control System (EPS 제어시스템 장착 승용차의 통합적 시뮬레이션 기법 연구)

  • Jang Bong-Choon;So Sang-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.72-80
    • /
    • 2006
  • Electric Power Steering (EPS) mechanism has become widely equipped in passenger vehicle due to the increasing environmental concerns and higher fuel efficiency. This paper describes the development of concurrent simulation technique and simulation integration technique of EPS control system with a dynamic vehicle system. A full vehicle model interacting with EPS control algorithm was concurrently simulated on a single bump road condition. The dynamic responses of vehicle chassis and steering system resulting from road surface impact were evaluated and compared with proving ground experimental data. The comparisons show reasonable agreement on tie-rod load, rack displacement, steering wheel torque and tire center acceleration. This concurrent simulation capability was employed fur EPS performance evaluation and calibration as well as for vehicle handling performance integration and synthesis.

Design of 4-axes Milling Machine for Underwater Milling of Nuclear Reactor Parts (원자로 부품의 수중 밀링 가공을 위한 4축 밀링 머신의 설계)

  • 이동규;이기용;김성균;이근우;박진호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.351-354
    • /
    • 2003
  • A new milling machine was designed and manufactured for underwater cutting of rotary specimen racks(RSR) used in the Korea Research Reactor. To cut out intermediate level radioactive stainless steel parts from RSR effectively and safely, the machine was designed to be operated in four directions of X, Y, Z axes and a rotation upon Z axis. The stress and displacement of main frame were simulated by using a structural analysis tool(Design Space) and the pressure of clamping device was evaluated.

  • PDF

Free Control Stability Analysis of Sports Utility Vehicle-EPS (Sports Utility Vehicle-EPS의 자유제어 안정성 해석)

  • 장봉춘;권대규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.162-167
    • /
    • 2004
  • In this research the Co-simulation technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. The dynamic responses of vehicle chassis and steering system are evaluated. Then, a full vehicle model interacted with EPS control is concurrently simulated with an impulsive steering wheel torque input to analyze the stability of 'free control' or hands free motion for Sports Utility Vehicle. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

Performance Improvement of IPMC(Ionic Polymer Metal Composites) for a Flapping Actuator

  • Lee, Soon-Gie;Park, Hoon-Cheol;Pandita Surya D.;Yoo Young-Tai
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.748-755
    • /
    • 2006
  • In this paper, a trade-off design and fabrication of IPMC(Ionic Polymer Metal Composites) as an actuator for a flapping device have been described. Experiments for the internal solvent loss of IPMCs have been conducted for various combinations of cation and solvent in order to find out the best combination of cation and solvent for minimal solvent loss and higher actuation force. From the experiments, it was found that IPMCs with heavy water as their solvent could operate longer. Relations between length/thickness and tip force of IPMCs were also quantitatively identified for the actuator design from the tip force measurement of 200, 400, 640, and $800{\mu}m$ thick IPMCs. All IPMCs thicker than $200{\mu}m$ were processed by casting $Nafion^{TM}$ solution. The shorter and thicker IPMCs tended to generate higher actuation force but lower actuation displacement. To improve surface conductivity and to minimize solvent evaporation due to electrically heated electrodes, gold was sputtered on both surfaces of the cast IPMCs by the Physical Vapor Deposition(PVD) process. For amplification of a short IPMC's small actuation displacement to a large flapping motion, a rack-and-pinion type hinge was used in the flapping device. An insect wing was attached to the IPMC flapping mechanism for its flapping test. In this test, the wing flapping device using the $800{\mu}m$ thick IPMC. could create around $10^{\circ}{\sim}85^{\circ}$ flapping angles and $0.5{\sim}15Hz$ flapping frequencies by applying $3{\sim|}4V$.

Effect of Fiber Orientation Angle and Property of Metal Laminate on Impact Behaviors of Fiber Metal Laminates (섬유의 적층각과 금속판의 특성에 따른 섬유 금속 적층판의 충격 손상 거동)

  • Nam, Hyun-Wook;Jung, Sung-Wook;Han, Kyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.372-380
    • /
    • 2003
  • Impact tests were conducted to study the effect of angle ply and metal laminate on impact damage characteristics of Fiber Metal laminates (FML). Impact tests were conducted using drop weight impact machine and damage behavior were analyzed by comparing with load-displacement curve and surface observation and microscopic observation of cross sections. The effect of angle ply on impact characteristics of FML are influenced by property of metal laminate. i.e., when the metal laminate is not enough to strong to prevent fiber debonding, Angle ply FML is superior to singly oriented ply (SOP) FML because angle ply enhance the stiffness by fiber supports and prevent (rack propagation. However, when the metal laminate is enough to strong to prevent fiber debonding, SOP FML is superior to Angle ply FML because the fiber of lower ply in Angle ply FML are more stressed than that of SOP FML.

Systems to prevent the load resistance loss of pallet racks exposed to cyclic external force

  • Heo, Gwanghee;Kim, Chunggil;Baek, Eunrim;Jeon, Seunggon
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • This study aims to determine the cause of the load resistance loss in storage racks that can be attributed to external forces such as earthquakes and to improve safety by developing reinforcement systems that can prevent load resistance loss. To this end, a static cyclic loading test was performed on pallet racks commonly used in logistics warehouses. The test results indicated that a pallet rack exposed to an external force loses more than 50% of its load resistance owing to the damage caused to column-beam joints. Three reinforcement systems were developed for preventing load resistance loss in storage racks exposed to an external force and for performing differentiated target functions: column reinforcement device, seismic damper, and viscoelastic damper. Shake table testing was performed to evaluate the earthquake response and verify the performance of these reinforcement systems. The results confirmed that, the maximum displacement, which causes the loss of load resistance and the permanent deformation of racks under external force, is reduced using the developed reinforcement devices. Thus, the appropriate selection of the developed reinforcement devices by users can help secure the safety of the storage racks.

Study on Concurrent Simulation Technique of Matlab CMDPS and A CarSim Base Full Car Model (매트랩 CMDPS와 카심 기반 완전차량모델의 동시시뮬레이션 기술에 관한 연구)

  • Jang, Bongchoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1555-1560
    • /
    • 2013
  • The Column type Motor Driven Power Steering(CMDPS) systems are generally equipped among passenger vehicles ensuring better vehicle safety and fuel economy. In general to analyze systems and to develop a controller a full vehicle model from CarSim developed by Mechanical Simulation Incorporation interacting with MDPS control algorithm from Matlab Simulink was concurrently simulated. This paper describes the development of concurrent simulation technique in detail for analyzing Matlab Simulink MDPS control system with a dynamic vehicle system because the specific method has not been revealed in detail. The steering wheel angle input was evaluated and well compared with proving ground experimental data. The comparisons from concurrent simulation show an effective way to develop and validate the control algorithm. This concurrent simulation capability will be efficiently used for CMDPS performance evaluation and logic tuning as well as for vehicle handling performance.

Outcome of Conservative Treatment of the Zone I, II 5th Metatarsal Base Fracture under Early Weight-Bearing (제5 중족골 제1, 2 구역 골절의 조기 체중부하의 비수술적 치료 결과)

  • Gwak, Heui-Chul;Park, Dae-Hyun;Kim, Jung-Han;Lee, Chang-Rack;Kwon, Yong-Uk;Kim, Dong-Seok
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.2
    • /
    • pp.150-156
    • /
    • 2021
  • Purpose: To determine how the location, displacement, intra-articular involvement, comminution of a 5th metatarsal base fracture affect results of early weight-bearing treatment. Materials and Methods: From January 2013 to July 2017, 34 cases of 34 patients diagnosed with a fracture of the zone I and II 5th metatarsal base were enrolled. The mean follow-up period was 13 months (6-15 months). One patient was excluded as a refracture during the follow-up period, and 33 patients underwent conservative treatment. Anteroposterior, lateral, and simple oblique radiography and computed tomography of the foot were performed to evaluate the location and displacement of the fracture, the degree of joint involvement, and comminution. In all 33 patients, a short leg cast or boot brace was selected immediately after the injury, tolerable weight bearing was allowed. If the pain disappeared, full weight bearing was performed after wearing a plain shoe or postoperative shoe. As a clinical result, the American Orthopedic Foot and Ankle Society (AOFAS) score was evaluated at the final follow-up. During outpatient follow-up, a simple radiograph of the foot was taken to confirm the time of radiological bone union and return to work. Results: Nine males and 24 females, with an average age of 48.7 years, were enrolled in the study. Twenty-four patients had zone I fractures, and nine patients had zone II fractures. Twenty-two out of 33 patients had a fracture displacement of 2 mm or more. Nine and five patients had joint involvement and comminution, respectively. There was a statistically significant return to work from zone I to zone II. The AOFAS score was excellent at the final follow-up and there was no significant difference. When classifying and comparing the degree of fracture displacement, joint involvement, and comminution, there were no significant differences in the radiological union time and return to work. In all cases, satisfactory results were obtained at the final follow-up. Conclusion: Satisfactory clinical results can be obtained by allowing early weight-bearing regardless of the fracture location, displacement, joint involvement, or comminution in zone I and II 5th metatarsal base fractures.