• Title/Summary/Keyword: rRNA clone library

Search Result 33, Processing Time 0.021 seconds

A Method for Comparing Multiple Bacterial Community Structures from 16S rDNA Clone Library Sequences

  • Hur, Inae;Chun, Jongsik
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.9-13
    • /
    • 2004
  • Culture-independent approaches, based on 16S rDNA sequences, are extensively used in modern microbial ecology. Sequencing of the clone library generated from environmental DNA has advantages over fingerprint-based methods, such as denaturing gradient gel electrophoresis, as it provides precise identification and quantification of the phylotypes present in samples. However, to date, no method exists for comparing multiple bacterial community structures using clone library sequences. In this study, an automated method to achieve this has been developed, by applying pair wise alignment, hierarchical clustering and principle component analysis. The method has been demonstrated to be successful in comparing samples from various environments. The program, named CommCluster, was written in JAVA, and is now freely available, at http://chunlab.snu.ac.kr/commcluster/.

Effects of Field-Grown Genetically Modified Zoysia Grass on Bacterial Community Structure

  • Lee, Yong-Eok;Yang, Sang-Hwan;Bae, Tae-Woong;Kang, Hong-Gyu;Lim, Pyung-Ok;Lee, Hyo-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P<0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.

Bacterial Diversity in the Human Saliva from Different Ages

  • Kang, Jung-Gyu;Kim, Seong-Hwan;Ahn, Tae-Young
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.572-576
    • /
    • 2006
  • To obtain primary idea on oral bacterium species that are generally present in periodotally healthy Koreans, the oral bacterial flora in the saliva of four periodontally healthy Koreans at different ages (5, 32, 35, 65) was investigated in this study. For this investigation, 16S rRNA gene clone libraries were generated from the saliva of the four healthy Koreans, and 50 clones were randomly selected from each saliva clone library and sequenced. Totally, 37 different kinds of bacterial 16S rRNA gene sequences were identified based on sequence homology search through GenBank database. The 37 kinds of saliva clone sequences were classified to 14 genera and 2 uncultured and 1 unidentified bacteria. Among the 14 identified genera, Streptococcus, Prevotella, and Veillollella were common genera, and Streptococcus was dominant genus that accounted for 7 different species. Among the seven Streptococcus species, S. salivarius appeared as the most common species. More numbers of species belonging to the genera Streptococcus and Prevotella was present in saliva from ages 32 and 35. While saliva from ages 5 and 65 showed more numbers of species belonging to the genera Rothia, including potential pathogenic species. Overall, saliva of a young child and a senior showed higher bacterial diversity than that of young adults.

Diversity of Microorganisms in Decaying Maize Stalks Revealed by a Molecular Method

  • Yang, Ming-Xia;Zhang, Han-Bo
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.367-370
    • /
    • 2007
  • Microbial diversity in decaying maize stalk was characterized by constructing and analyzing rRNA gene clone library. Total 47 OTUs were obtained from 82 bacterial clones, including Proteobacteria (64.6%), Actinobacteria (30.5%), Bacteroidetes (2.4%) and Firmicutes (2.4%). Most proteobacterial clones were members of Rhizobium, Pseudomonas and Stenotrophomonas. Eighty-four percent of Actinobacteria was related to Microbacterium. Only 14 OTUs were identified from 124 fungal clones, including Ascomycota (88%) and Basidiomycota (12%). Sixty percent of Ascomycota were members of Eupenicillium and Paecilomyces but all Basidiomycota were close to Kurtzmanomyces nectairei.

Diversity of Butyrivibrio Group Bacteria in the Rumen of Goats and Its Response to the Supplementation of Garlic Oil

  • Zhu, Zhi;Hang, Suqin;Mao, Shengyong;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.179-186
    • /
    • 2014
  • This study aimed to investigate the diversity of the Butyrivibrio group bacteria in goat rumen and its response to garlic oil (GO) supplementation as revealed by molecular analysis of cloned 16S rRNA genes. Six wethers fitted with ruminal fistulas were assigned to two groups for a cross-over design with 28-d experimental period and 14-d interval. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal contents were used for DNA extraction collected before morning feeding on d 28. A total bacterial clone library was firstly constructed by nearly full-length 16S rRNA gene cloned sequences using universal primers. The resulting plasmids selected by Butyrivibrio-specific primers were used to construct a Butyrivibrio group-specific bacterial clone library. Butyrivibrio group represented 12.98% and 10.95% of total bacteria in control and GO group, respectively. In libraries, clones were classified to the genus Pseudobutyrivibrio, Butyrivibrio and others within the family Lachnospiraceae. Additionally, some specific clones were observed in GO group, being classified to the genus Ruminococcus and others within the family Ruminococcaceae. Based on the criterion that the similarity was 97% or greater with database sequences, there were 29.73% and 18.42% of clones identified as known isolates (i.e. B. proteoclasticus and Ps. ruminis) in control and GO groups, respectively. Further clones identified as B. fibrisolvens (5.41%) and R. flavefaciens (7.89%) were specifically found in control and GO groups, respectively. The majority of clones resembled Ps. ruminis (98% to 99% similarity), except for Lachnospiraceae bacteria (87% to 92% similarity) in the two libraries. The two clone libraries also appeared different in Shannon diversity index (control 2.47 and GO group 2.91). Our results indicated that the Butyrivibrio group bacteria had a complex community with considerable unknown species in the goat rumen.

Microbial Community Analysis in the Wastewater Treatment of Hypersaline-Wastewater (고농도 염분폐수의 정화능이 우수한 기능성 미생물 커뮤니티의 군집 분석)

  • Lee, Jae-Won;Kim, Byung-Hyuk;Park, Yong-Seok;Song, Young-Chae;Koh, Sung-Cheol
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.377-385
    • /
    • 2014
  • In this study, a wastewater treatment system for hypersaline wastewater utilizing the Hypersaline Wastewater Treatment Community (HWTC) has been developed. The hypersaline wastewater treatment efficiency and microbial community of the HWTC were investigated. The average removal efficiencies of chemical oxygen demand were 84% in an HRT of 2.5 days. Microbial community analysis, by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments and 16S rRNA gene clone library, revealed community diversity. The 16S rRNA gene analysis of dominant microbial bacteria in 4% hypersaline wastewater confirmed the presence of Halomonas sp. and Paenibacillus sp. Phylogenetic analysis suggested that the taxonomic affiliation of the dominant species in the HWTC was ${\gamma}$-proteobacteria and firmicutes. These results indicate the possibility that an appropriate hypersaline wastewater treatment system can be designed using acclimated sludge with a halophilic community.

cDNAs encoding the antigenic proteins in pathogenic strain of Entamoeba histolytica (이질아메바 병원성 분리주에서 발현되는 항원 단백질을 coding하는 cDNA)

  • 임경일;최종태
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.3
    • /
    • pp.203-210
    • /
    • 1997
  • The difrrrenlial display reverse transcription polymerase chain reaction (DDRT-PCR) aniilysis roils performed to identify the pathogellir strain specific amplicons. mRNAs were purified from the trophozoites of the pathogenif strain YS-27 and the non-pathogenic strain S 16. respectively. Three kinds of rirsl stranded rDNAs were reverse transcribed from the mRNAs by one base anchored oligo-dT 11M (M: A. C, or G) primers. Each cDNA lemplatr was used for DDRT-PCK analysis. A total of 144 pathogenic strain specific amplicons was observed in DDRT-PCR analysis using primer combinations of the 11 arbitrary primers and the 3 one base anchored oli해-dT11M primers. Of these 31 amplit'tons were verified as the amplirons amplified only from the mRNAs of the pathogenic strain by DNA slots biol llybridizatioil. Furthel cklaracleization of the 31 pathogenic strain sprcifil amplicons by DNA slot blot hybridlnation analysis using biotin labeled Probes or the PCR amplified DNA of rysteine proteinase genes revealed that 21 of them were amplliried from the maNAs of the cysteine proteinase genes. Four randomly selected amplirons out of the rest 10 amplirons were used fur screening of cDNA library followed by immunoscreening and all of them were turned outs to be amplified from the mRNA.

  • PDF

Analysis of Bacterial Diversity in Fermented Skate Using Culture-dependent and Culture-independent Approaches (배양 의존적 및 배양 비의존적 방법에 의한 홍어회 서식 미생물의 다양성 분석)

  • Lee, Eun-Jung;Kim, Tae-Hyung;Kim, Ha-Kun;Lee, Jung-Kee;Kwak, Hahn-Shik;Lee, Jong-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.322-328
    • /
    • 2010
  • Fermented skate is a traditional Korean food popular in Southwestern area of Korea. It has a characteristic flavor and alkaline pH. In this study we tried to determine the microbial flora in fermented skate using two different approaches. In culture-independent method, we amplified V2 region of 16S rRNA gene by PCR and cloned them into pUC18 plasmid to construct 16S rDNA fragment library. BLAST searches for the sequences obtained from this library revealed that uncultured bacterium clone 054E11.b was the most dominant flora in this fermented fish. In culture-dependent method, we diluted suspension of skate and spreaded on MRS, PCA, and MacConkey plates. We identified colonies grown on those plates by using PCR amplification of V2 region of 16S rRNA and DNA sequencing. BLAST searches of those DNA sequences resulted in totally different species with the observations from the 16S rDNA library analysis. Discrepancies of results obtained from both approaches suggest that the agar plates used in culture-dependent method may be different from the real condition of fermented skate. Therefore, results from culture-independent approach using 16S rDNA fragment library analysis may reflect real microbial flora in fermented skate.

Bacterial diversity in children's dental caries (소아의 치아 우식 부위별 세균 다양성)

  • Kim, Eun-Mi;Baik, Keun-Sik;Ha, Myung-Ok
    • Journal of Korean society of Dental Hygiene
    • /
    • v.13 no.5
    • /
    • pp.889-900
    • /
    • 2013
  • Objectives : Molecular biology techniques were employed to assess diversity of bacterial in children's dental caries. Methods : DNA of germs was extracted and the diversity of the 16S rRNA clones was analyzed by amplified rDNA restriction analysis and sequencing. The experimental samples were pit and fissure caries (PC), deep dentinal caries (DC), smooth surface caries (SC), and supragingival plaque (PQ) from 50 children of age less than 12 years old. The control group was healthy teeth supragingival plaque (HT). Thirty clones from each 16S rRNA clone library of 5 samples were randomly selected, thus a total of 150 clones were analyzed. Results : Amplified rDNA restriction analysis uncovered 18, 20, 11, 17, and 22 phylotypes from healthy teeth, pit and fissure caries, deep dentinal caries, smooth surface caries, and supragingival plaque, respectively. Sequencing analysis found the dominance of Actinomycs naeslundii and Fusobacterium nucleatum in the healthy teeth; Leptotrichia sp. in the pit and fissure caries; Actinomyces sp., Streptococcus mutans, and Rahnella aquatilis in the deep dentinal caries; Streptococcus mutans and Actinomyces sp. in the smooth surface caries; Enterobacter hormaechei and Streptococcus sanguinis in the supragingival plaque. Conclusions : Clonal analysis identified 6 phyla, 20 genera, and 51 species.

Detection and Potential Abundances of Anammox Bacteria in the Paddy Soil

  • Khanal, Anamika;Lee, Seul;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • BACKGROUND: Microbes that govern a unique biochemical process of oxidizing ammonia into dinitrogen gas, such as anaerobic ammonium oxidation (anammox) have been reported to play a pivotal role in agricultural soils and in oceanic environments. However, limited information for anammox bacterial abundance and distribution in the terrestrial habitats has been known. METHODS AND RESULTS: Phylogenetic and next-generation sequencing analyses of bacterial 16S rRNA gene were performed to examine potential anammox bacteria in paddy soils. Through clone libraries constructed by using the anammox bacteria-specific primers, some clones showed sequence similarities with Planctomycetes (87% to 99%) and anammox bacteria (94% to 95%). Microbial community analysis for the paddy soils by using Illumina Miseq sequencing of 16S rRNA gene at phylum level was dominated by unclassified Bacteria at 33.2 ± 7.6%, followed by Chloroflexi at 20.4 ± 2.0% and Acidobacteria at 17.0 ± 6.5%. Planctomycetes that anammox bacteria are belonged to was 1.5% (± 0.3) on average from the two paddy soils. CONCLUSION: We suggest evidence of anammox bacteria in the paddy soil. In addition to the relatively well-known microbial processes for nitrogen-cycle, anammox can be a potential contributor on the cycle in terrestrial environments such as paddy soils.