• Title/Summary/Keyword: rDNA organization

Search Result 44, Processing Time 0.023 seconds

Recent Advancement on the Knowledges of Meiotic Division (I) (減數分裂, 最近의 進步(I))

  • 한창열
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.6
    • /
    • pp.453-475
    • /
    • 1998
  • During the 100 years since the initial discovery of meiotic phenomenon many brilliant aspects have been elucidated, but further researches based on light microscopy alone as an experimental tool have been found to have some limits and shortcomings. By the use of electron microscopy and armed with the advanced knowledges on modern genetics and biochemistry it has been possible to applu molecular technology in gaining information on the detailed aspects of meiosis. As synapsis takes place, a three-layered proteinous structure called the synatonemal complex starts to form in the space between the homologous chromosomes. To be more precise, it begins to form along the paired chromosomes early in the prophase I of meiotic division. The mechanism that leads to precise point-by-point pairing between homologous chromocomes division. The mechamism that leads to precise point-by-point pairing between homologous chromosomes remains to be ascertained. Several items of information, however, suggest that chromsome alignment leading to synapsis may be mediated somehow by the nuclear membrane. Pachytene bivalents in eukaryotes are firmly attached to the inner niclear membrane at both termini. This attached begins with unpaired leptotene chromosomes that already have developed a lateral element. Once attached, the loptotene chromosomes begin to synapse. A number of different models have been proposed to account for genetic recombination via exchange between DNA strands following their breakage and subsequent reunion in new arrangement. One of the models accounting for molecular recombination leading to chromatid exchange and chiasma formation was first proposed in 1964 by Holliday, and 30 years later still a modified version of his model is favored. Nicks are made by endomuclease at corresponding sites on one strant of each DNA duplex in nonsister chromatid of a bivalent during prophase 1 of meiosis. The nicked strands loop-out and two strands reassociate into an exchanged arrangement, which is sealed by ligase. The remaining intact strand of each duplex is nicked at a site opposite the cross-over, and the exposed ends are digested by exonuclease action. Considerable progress has been made in recent years in the effort to define the molecular and organization features of the centromere region in the yeast chromosome. Centromere core region of the DNA duplex is flanked by 15 densely packed nucleosomes on ons side and by 3 packed nucleosomes on the other side, that is, 2000 bp on one side and 400 400 bp in the other side. All the telomeres of a given species share a common DNA sequence. Two ends of each chromosome are virtually identical. At the end of each chromosome there exist two kinds of DNA sequence" simple telpmeric sequences and telpmere-associated sequencies. Various studies of telomere replication, function, and behabior are now in progress, all greatly aided by molecular methods. During nuclear division in mitosis as well as in meiosis, the nucleili disappear by the time of metaphase and reappear during nuclear reorganizations in telophase. When telophase begins, small nucleoli form at the NOR of each nucleolar-organizing chromosome, enlarge, and fuse to form one or more large nucleoli. Nucleolus is a special structure attached top a specific nucleolar-organizing region located at a specific site of a particular chromosome. The nucleolus is a vertical factory for the synthesis of rRNAs and the assenbly of ribosome subunit precursors.sors.

  • PDF

Comparative evaluation of the mutagenicity and genotoxicity of smoke condensate derived from Korean cigarettes

  • Kim, Ha Ryong;Lee, Jeong Eun;Jeong, Mi Ho;Choi, Seong Jin;Lee, Kyuhong;Chung, Kyu Hyuck
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.14.1-14.7
    • /
    • 2015
  • Objectives Cigarette smoking is associated with carcinogenesis owing to the mutagenic and genotoxic effects of cigarette smoke. The aim of this study was to evaluate the mutagenic and genotoxic effects of Korean cigarettes using in vitro assays. Methods We selected 2 types of cigarettes (TL and TW) as benchmark Korean cigarettes for this study, because they represent the greatest level of nicotine and tar contents among Korean cigarettes. Mutagenic potency was expressed as the number of revertants per ${\mu}g$ of cigarette smoke condensate (CSC) total particulate matter whereas genotoxic potency was expressed as a concentration-dependent induction factor. The CSC was prepared by the International Organization for Standardization 3308 smoking method. CHO-K1 cells were used in vitro micronucleus (MNvit) and comet assays. Two strains of Salmonella typhimurium (Salmonella enterica subsp. enterica ; TA98 and TA1537) were employed in Ames tests. Results All CSCs showed mutagenicity in the TA98 and TA1537 strains. In addition, DNA damage and micronuclei formation were observed in the comet and MNvit assays owing to CSC exposure. The CSC from the 3R4F Kentucky reference (3R4F) cigarette produced the most severe mutagenic and genotoxic potencies, followed by the CSC from the TL cigarette, whereas the CSC from the TW cigarette produced the least severe mutagenic and genotoxic potencies. Conclusions The results of this study suggest that the mutagenic and genotoxic potencies of the TL and TW cigarettes were weaker than those of the 3R4F cigarette. Further study on standardized concepts of toxic equivalents for cigarettes needs to be conducted for more extensive use of in vitro tests.

Cloning of Notl-linked DNA Detected by Restriction Landmark Genomic Scanning of Human Genome

  • Kim Jeong-Hwan;Lee Kyung-Tae;Kim Hyung-Chul;Yang Jin-Ok;Hahn Yoon-Soo;Kim Sang-Soo;Kim Seon-Young;Yoo Hyang-Sook;Kim Yong-Sung
    • Genomics & Informatics
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Epigenetic alterations are common features of human solid tumors, though global DNA methylation has been difficult to assess. Restriction Landmark Genomic Scanning (RLGS) is one of technology to examine epigenetic alterations at several thousand Notl sites of promoter regions in tumor genome. To assess sequence information for Notl sequences in RLGS gel, we cloned 1,161 unique Notl-linked clones, compromising about 60% of the spots in the soluble region of RLGS profile, and performed BLAT searches on the UCSC genome server, May 2004 Freeze. 1,023 (88%) unique sequences were matched to the CpG islands of human genome showing a large bias of RLGS toward identifying potential genes or CpG islands. The cloned Notl-loci had a high frequency (71%) of occurrence within CpG islands near the 5' ends of known genes rather than within CpG islands near the 3' ends or intragenic regions, making RLGS a potent tool for the identification of gene-associated methylation events. By mixing RLGS gels with all Notl-linked clones, we addressed 151 Notl sequences onto a standard RLGS gel and compared them with previous reports from several types of tumors. We hope our sequence information will be useful to identify novel epigenetic targets in any types of tumor genome.

Investigation of Association between oipA and iceA1/iceA2 Genotypes of Helicobacter pylori and Gastric Cancer in Iran

  • Aghdam, Saeed Mahboubi;Sardari, Zeinab;Safaralizadeh, Reza;Bonyadi, Mortaza;Abdolmohammadi, Reza;Moghadam, Mostafa Soltani;Khalilnezhad, Ahad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8295-8299
    • /
    • 2014
  • Background: H pylori is the main causative agent of Gastric cancer and chronic gastritis. Genetic diversity of H. pylori has major contribution in its pathogenesis. We investigated the prevalence of oipA and iceA1/iceA2 positive strains of H. pylori among patients with gastric cancer and gastritis. Materials and Methods: Sampling performed by means of endoscopy from 86 patients. DNA was extracted from tissue samples using DNA extraction kit. PCR assay was performed and products were monitored by Agarose Gel Electrophoresis. Results: Urease Test and 16S rRNA PCR did not show significant differences in detection of H. pylori. The frequency of iceA1 allele in patients with gastric cancer was significantly higher than those with gastritis (p<0.05). However, there was no significant difference in prevalence of oipA and iceA2 genes among the two groups of patients (p>0.05). Conclusions: The iceA1 gene, but the oipA and iceA2 genes, is associated with H. pylori-induced gastric cancer. However, confirmatory studies must be performed in future.

Structural Analysis of the fcbABC Gene Cluster Responsible for Hydrolytic Dechlorination of 4-Chlorobenzoate from pJS1 Plasmid of Comamonas sp. P08

  • Lee, Jeong-Soon;Lee, Kyoung;Ka, Jong-Ok;Jong-Chan;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.89-94
    • /
    • 2003
  • Bacterial strain No. P08 isolated from wastewater at the Cheongju industrial complex was found to be capable of degrading 4-chlorobenzoate under aerobic condition. P08 was identified as Comamonas sp. from its cellular fatty acid composition and 16S rDNA sequence. The fcb genes, responsible for the hydrolytic dechlorination of 4-chlorobenzoate, were cloned from the plasmid pJJl of Comamonas sp. P08. The fcb gene cluster of comamonas sp. PO8 was organized in the order fcbB-fcbA-fcbTl-fcbT2-fcbT3-fcbC. This organization of the fcb genes was very similar to that of the fcb genes carried on the chromosomal DNA of pseudomonas sp. DJ-12. However, it differed from the fcbA-fcbB -fcbC ordering of Arthrobacter sp. SU. The nucleotide sequences of the fcbABC genes of strain P08 showed 98% and 53% identities to those of Pseudomonas sp. DJ-12 and Arthrobacter sp. SU, respectively. This suggests that the fcb genes might have been derived from Pseudomonas sp. DJ-12 to form plasmid pJSl in Comamonas sp. P08, or that the fcb genes in strain DJ-12 were transposed from Comamonas sp. P08 plasmid.

Identification of Ethnically Specific Genetic Variations in Pan-Asian Ethnos

  • Yang, Jin Ok;Hwang, Sohyun;Kim, Woo-Yeon;Park, Seong-Jin;Kim, Sang Cheol;Park, Kiejung;Lee, Byungwook;The HUGO Pan-Asian SNP Consortium
    • Genomics & Informatics
    • /
    • v.12 no.1
    • /
    • pp.42-47
    • /
    • 2014
  • Asian populations contain a variety of ethnic groups that have ethnically specific genetic differences. Ethnic variants may be highly relevant in disease and human differentiation studies. Here, we identified ethnically specific variants and then investigated their distribution across Asian ethnic groups. We obtained 58,960 Pan-Asian single nucleotide polymorphisms of 1,953 individuals from 72 ethnic groups of 11 Asian countries. We selected 9,306 ethnic variant single nucleotide polymorphisms (ESNPs) and 5,167 ethnic variant copy number polymorphisms (ECNPs) using the nearest shrunken centroid method. We analyzed ESNPs and ECNPs in 3 hierarchical levels: superpopulation, subpopulation, and ethnic population. We also identified ESNP- and ECNP-related genes and their features. This study represents the first attempt to identify Asian ESNP and ECNP markers, which can be used to identify genetic differences and predict disease susceptibility and drug effectiveness in Asian ethnic populations.

Genetic Organization of a 50-kb Gene Cluster Isolated from Streptomyces kanamyceticus for Kanamycin Biosynthesis and Characterization of Kanamycin Acetyltransferase

  • ZHAO XIN QING;KIM KYOUNG ROK;SANG LI WEI;KANG SUK HO;YANG YOUNG YELL;SUH JOO WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.346-353
    • /
    • 2005
  • A 50-kb chromosome DNA region was isolated from Streptomyces kanamyceticus by screening the fosmid genomic library, using the 16S rRNA methylase gene (kmr) as a probe. Sequence analysis of this region revealed 42 putative open reading frames (ORFs), which included biosynthetic genes such as genes responsible for 2-deoxystreptamine (2­DOS) biosynthesis as well as genes for resistance and regulatory function. Also, the kanamycin acetyltransferase gene (kac) was characterized by in vitro enzyme assay, which conferred E. coli BL21 (DE3) with 10, 50, and 80-times higher resistance to kanamycin A, tobramycin, and amikacin, respectively, than the control strain had, thus strongly indicating that the isolated gene cluster is very likely involved in kanamycin biosynthesis. This work provides a solid basis for further elucidation of the kanamycin biosynthesis pathway as well as the productivity improvement and construction of new hybrid antibiotics.

Description of eight new mitochondrial genomes for the genus Neoarius and phylogenetic considerations for the family Ariidae (Siluriformes)

  • Luiz Guilherme Pereira Pimentel;Iuri Batista da Silva;Igor Henrique Rodrigues-Oliveira;Rubens Pasa;Fabiano Bezerra Menegidio;Karine Frehner Kavalco
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.51.1-51.5
    • /
    • 2023
  • The genus Neoarius, known as marine catfish, is a group of the family Ariidae, composed of 10 species found in Oceania. None of the species in this genus have their mitochondrial genome described, which is highly valuable in phylogenetic and molecular evolution studies. For the present work, eight species from the Neoarius genus were selected: Neoarius utarus, Neoarius midgleyi, Neoarius graeffei, Neoarius leptaspis, Neoarius berenyi, Neoarius paucus, Neoarius pectoralis, and Neoarius aff. graeffei. DNA sequences of the eight species were obtained through the NCBI Sequence Read Archive (SRA) database, and the mitochondrial genomes were assembled using the NOVOplasty tool on the Galaxy platform, subsequently annotated with the MitoAnnotator tool. We then utilized the protein-coding genes from the mitogenomes to estimate the phylogenetic relationships within the group, including seven additional mitogenomes available in the NCBI. In all species, the mitochondrial genomes presented 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and 1 D-loop.

Lack of Replication of Genetic Association with Body Mass Index Detected by Genome-wide Association Study

  • Lee, Hae-In;Kim, Jae-Jung;Park, Tae-Sung;Kim, Kyung-A;Lee, Jong-Eun;Cho, Yoon-Shin;Lee, Jong-Young;Han, Bok-Ghee;Lee, Jong-Keuk
    • Genomics & Informatics
    • /
    • v.9 no.2
    • /
    • pp.59-63
    • /
    • 2011
  • Obesity provokes many serious human diseases, including various cardiovascular diseases and diabetes. Body mass index (BMI) is a highly heritable trait that is broadly used to diagnose obesity. To identify genetic loci associated with obesity in Asians, we conducted a genome-wide association study (GWAS) of a population of Korean adults (n=6,742, age 40~60 years) and detected six BMI risk loci (TNR, FAM124B, RGS12, NFE2L3, MC4R and FTO) having p< $1{\times}10^{-5}$. However, in the replication study, only melanocortin 4 receptor gene (MC4R) (rs9946888, p=$4.58{\times}10^{-7}$) was replicated with marginal significance (p<0.05) in the second cohort (n=5,102, age 40~60 years). This study indicates that each locus associated with BMI has very weak genetic effect.

Genetic Structure of xyl Gene Cluster Responsible for Complete Degradation of (4-Chloro )Benzoate from Pseudomonas sp. S-47

  • Park, Dong-Woo;Lee, Kyoung;Chae, Jong-Chan;Kudo, Toshiaki;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.483-489
    • /
    • 2004
  • Pseudomonas sp. S-47 is a bacterium capable of degrading benzoate as well as 4-chlorobenzoate (4CBA). Benzoate and 4CBA are known to be degraded via a meta-cleavage pathway characterized by a series of enzymes encoded by xyl genes. The meta-cleavage pathway operon in Pseudomonas sp. S-47 encodes a set of enzymes which transform benzoate and 4CBA into TCA cycle intermediates via the meta-cleavage of (4-chloro )catechol to produce pyruvate and acetyl-CoA. In the current study, the meta-pathway gene cluster was cloned from the chromosomal DNA of S-47 strain to obtain pCS1, which included the degradation activities for 4CBA and catechol. The genetic organization of the operon was then examined by cloning the meta-pathway genes into a pBluescript SKII(+) vector. As such, the meta-pathway operon from Pseudomonas sp. S-47 was found to contain 13 genes in the order of xylXYZLTEGFlQKIH. The two regulatory genes, xylS and xylR, that control the expression of the meta-pathway operon, were located adjacently downstream of the meta-pathway operon. The xyl genes from strain S-47 exhibited a high nucleoside sequence homology to those from Pseudomonas putida mt-2, except for the xylJQK genes, which were more homologous to the corresponding three genes from P. stutzeri AN10. One open reading frame was found between the xylH and xylS genes, which may playa role of a transposase. Accordingly, the current results suggest that the xyl gene cluster in Pseudomonas sp. S-47 responsible for the complete degradation of benzoate was recombined with the corresponding genes from P. putida mt-2 and P. stutzeri AN10.