• Title/Summary/Keyword: rDNA analysis

Search Result 1,776, Processing Time 0.034 seconds

Analysis of diversity of hemolytic microbiome from aquafarm of arkshell, Scapharca broughtonii (피조개 양식장 내 용혈성 미생물의 다양성 분석)

  • Gwon, Byeong-Geun;Kim, Young-Ok;Nam, Bo-Hye;Kim, Woo-Jin;Kong, Hee Jeong;Kim, Bong-Seok;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul Min;Kim, Dong-Gyun
    • Journal of fish pathology
    • /
    • v.26 no.3
    • /
    • pp.193-206
    • /
    • 2013
  • The ark shell, Scapharca broughtonii is a marine bivalve mollusks belonging to the family Arcidae and important seafood for Korean and Japanese, and southern coast is brisk bays for the ark shell aquaculture. However, productivity of ark shell from these regions were rapidly reduced during the last decade due to mass mortality. The reason of this great damage has not yet been identified. To overcome this economic loss, diverse investigations were focused on environmental factors that affects in the physiology of S. broughtonii, but microbiological researches were performed insufficiently. Hemoglobin is one of the major blood component of ark shell and is damaged by some species of bacterial toxins. We concentrated on this red pigment because hemolysis could be the cause of ark shell mortality. In this study, we analyzed microbial diversity of underwater sediments in coastal regions and also existences in the body of S. broughtonii. We investigate about 4,200 isolates collected from June to September for microbial diversity of sediments and ark shell. We screened all of culturable microorganisms, and identified 25 genera 118 species, 24 genera 89 species, 30 genera 109 species and 39 genera 141 species, and selected 140 unique colonies for identification and challenge assay.

Changes of Efficacy of Antioxidant, Antidyslipidemic, Antidiabetic and Microbiological Characteristics in Fermented and Salt-treated Fermented Codonopsis lanceolata (발효 더덕 및 소금 처리 발효 더덕의 미생물 특성과 항산화, 항비만, 항당뇨 효능 변화)

  • Seong, Eun-Hak;Lee, Myeong-Jong;Kim, Hojun;Shin, Na Rae
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.106-114
    • /
    • 2018
  • Objectives: We investigated about the microbial properties and changes in the efficacy of the Codonopsis lanceolata (CL) by natural fermentation. Methods: CL was fermented for four weeks in a well-ventilated place with 2.5% salt. pH, total sugar, total polyphenol, and total flavonoid were measured to determine fermentation characteristics according to fermentation period and salt treatment. Polymerase chain reaction denaturing gradient gel electrophoresis and random amplification of polymorphic DNA-polymerase chain reaction were carried out for microbial analysis during fermentation. In addition, HepG2 cell was cultured to check the lipid accumulation through oil red O staining and the glucose uptake was analyzed by measuring the 2-NBDG at C2C12 cell. Results: The pH level and the total sugar decreased with the CL fermentation. Total polyphenol and flavonoid increased after CL fermentation. It was confirmed that Leuconostoc mesenteroides were maintained continuously during fermentation. In the salt treatment CL, there was a sharp increase in Rahnella aquatilis. Lactobacillus plantarum matrix was observed in fermented CL. In addition, Lactococcus lactis, Weissella koreensis, R. aquatilis, L. plantarum, Leu. mesenteroides have been added to the salt treatment. Glucose uptake were significantly increased after fermentation with salt for four weeks. Lipid accumulation in the HepG2 cells was observed that there was difference (P<0.01) between free fatty acid group (100%) and decreased 4 weeks after fermentation (90.38%) at $800{\mu}g/mL$. Conclusions: Total polyphenol and flavonoid were increased after CL fermentation. Especially, percentage of the glucose uptake and lipid accumulation inhibition increased in CL fermentation with salt. It is expected that fermentation of salt treated CL will be more effective in diabetes and fatty liver.

Identification and Characterization of Microbial Community in the Coelomic Fluid of Earthworm (Aporrectodea molleri)

  • Yakkou, Lamia;Houida, Sofia;Dominguez, Jorge;Raouane, Mohammed;Amghar, Souad;Harti, Abdellatif El
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.391-402
    • /
    • 2021
  • Earthworms play an important role in soil fertilization, interacting continually with microorganisms. This study aims to demonstrate the existence of beneficial microorganisms living in the earthworm's immune system, the coelomic fluid. To achieve this goal, a molecular identification technique was performed, using cytochrome c oxidase I (COI) barcoding to identify abundant endogenic earthworms inhabiting the temperate zone of Rabat, Morocco. Then, 16S rDNA and ITS sequencing techniques were adopted for bacteria and fungi, respectively. Biochemical analysis, showed the ability of bacteria to produce characteristic enzymes and utilize substrates. Qualitative screening of plant growth-promoting traits, including nitrogen fixation, phosphate and potassium solubilization, and indole acetic acid (IAA) production, was also performed. The result of mitochondrial COI barcoding allowed the identification of the earthworm species Aporrectodea molleri. Phenotypic and genotypic studies of the sixteen isolated bacteria and the two isolated fungi showed that they belong to the Pseudomonas, Aeromonas, Bacillus, Buttiauxella, Enterobacter, Pantoea, and Raoultella, and the Penicillium genera, respectively. Most of the isolated bacteria in the coelomic fluid showed the ability to produce β-glucosidase, β-glucosaminidase, Glutamyl-β-naphthylamidase, and aminopeptidase enzymes, utilizing substrates like aliphatic thiol, sorbitol, and fatty acid ester. Furthermore, three bacteria were able to fix nitrogen, solubilize phosphate and potassium, and produce IAA. This initial study demonstrated that despite the immune property of earthworms' coelomic fluid, it harbors beneficial microorganisms. Thus, the presence of resistant microorganisms in the earthworm's immune system highlights a possible selection process at the coelomic fluid level.

Phylogenetic Diversity and Antibacterial Activity of Bacteria from Shindari of Jeju Traditional Fermented Food (제주 전통 발효식품 쉰다리에서 분리한 세균의 군집 조사 및 어류질병세균과 인체유해세균에 대한 항균활성효과)

  • Ryu, Young-Soo;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.73-82
    • /
    • 2021
  • Throughout history, barley was the typical crop of the soils of Jeju Island due to its topographical features. People in Jeju eat Shindari or Dansul. Shindari or Dansul is a fermented drink of Jeju, made from the leftovers of cooked barely and nuruk of short fermentation periods. Although Makgeolli and Shindari share a similar fermentation period and materials, research on Shindari or Dansul is still in its early stages. In this study, we examined major bacterial species of Shindari or Dansul. In addition, we confirmed the antibacterial activities of an isolated strain against fish and human-harmful bacteria. Among the isolates, Firmicutes consisted of 73% and the Proteobacteria of 27%, indicating that the Firmicutes phylum was the dominant one. In addition, the Pediococcus genus and the Bacillus genus were the most prevalent consisting of 25%, followed by the Cronobacter genus (25%), the Enterococcus genus (16%), the Aneurinibacillus genus (5%), the Klebsiella genus (4%), and the Paenibacillus genus (2%). We conclude that the Lactobacillus genus predominated in Makgeolli, but the Pediococcus genus predominated in Shindari. In a study of the antibacterial activity, growth inhibition was observed for all bacteria, except for the fish disease bacterium Photobacterium damselae subsp. piscicida and the human-harmful bacterium Streptococcus mutans.

Risk factors for cytological progression in HPV 16 infected women with ASC-US or LSIL: The Korean HPV cohort

  • So, Kyeong A;Kim, Seon Ah;Lee, Yoo Kyung;Lee, In Ho;Lee, Ki Heon;Rhee, Jee Eun;Kee, Mee Kyung;Cho, Chi Heum;Hong, Sung Ran;Hwang, Chang Sun;Jeong, Mi Seon;Kim, Ki Tae;Ki, Moran;Hur, Soo Young;Park, Jong Sup;Kim, Tae Jin
    • Obstetrics & gynecology science
    • /
    • v.61 no.6
    • /
    • pp.662-668
    • /
    • 2018
  • Objective This study was to identify the risk factors for cytological progression in women with atypical squamous cells of undetermined significance (ASC-US) or low-grade squamous intraepithelial lesions (LSIL). Methods We analyzed data from women infected with the human papillomavirus (HPV) who participated in the Korean HPV cohort study. The cohort recruited women aged 20-60 years with abnormal cervical cytology (ASC-US or LSIL) from April 2010. All women were followed-up at every 6-month intervals with cervical cytology and HPV DNA testing. Results Of the 1,158 women included, 654 (56.5%) and 504 (43.5%) women showed ASC-US and LSIL, respectively. At the time of enrollment, 143 women tested positive for HPV 16 (85 single and 58 multiple infections). Cervical cytology performed in the HPV 16-positive women showed progression in 27%, no change in 23%, and regression in 50% of the women at the six-month follow-up. The progression rate associated with HPV 16 infection was higher than that with infection caused by other HPV types (relative risk [RR], 1.75; 95% confidence interval [CI], 1.08-2.84; P=0.028). The cytological progression rate in women with persistent HPV 16 infection was higher than that in women with incidental or cleared infections (P<0.001). Logistic regression analysis showed a significant relationship between cigarette smoking and cytological progression (RR, 4.15; 95% CI, 1.01-17.00). Conclusion The cytological progression rate in HPV 16-positive women with ASC-US or LSIL is higher than that in women infected with other HPV types. Additionally, cigarette smoking may play a role in cytological progression.

Effect of feeding raw potato starch on the composition dynamics of the piglet intestinal microbiome

  • Yi, Seung-Won;Lee, Han Gyu;So, Kyoung-Min;Kim, Eunju;Jung, Young-Hun;Kim, Minji;Jeong, Jin Young;Kim, Ki Hyun;Oem, Jae-Ku;Hur, Tai-Young;Oh, Sang-Ik
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1698-1710
    • /
    • 2022
  • Objective: Raw potato starch (RPS) is resistant to digestion, escapes absorption, and is metabolized by intestinal microflora in the large intestine and acts as their energy source. In this study, we compared the effect of different concentrations of RPS on the intestinal bacterial community of weaned piglets. Methods: Male weaned piglets (25-days-old, 7.03±0.49 kg) were either fed a corn/soybean-based control diet (CON, n = 6) or two treatment diets supplemented with 5% RPS (RPS5, n = 4) or 10% RPS (RPS10, n = 4) for 20 days and their fecal samples were collected. The day 0 and 20 samples were analyzed using a 16S rRNA gene sequencing technology, followed by total genomic DNA extraction, library construction, and high-throughput sequencing. After statistical analysis, five phyla and 45 genera accounting for over 0.5% of the reads in any of the three groups were further analyzed. Furthermore, short-chain fatty acids (SCFAs) in the day 20 fecal samples were analyzed using gas chromatography. Results: Significant changes were not observed in the bacterial composition at the phylum level even after 20 d post feeding (dpf); however, the abundance of Intestinimonas and Barnesiella decreased in both RPS treatment groups compared to the CON group. Consumption of 5% RPS increased the abundance of Roseburia (p<0.05) and decreased the abundance of Clostridium (p<0.01) and Mediterraneibacter (p< 0.05). In contrast, consumption of 10% RPS increased the abundance of Olsenella (p<0.05) and decreased the abundance of Campylobacter (p<0.05), Kineothrix (p<0.05), Paraprevotella (p<0.05), and Vallitalea (p<0.05). Additionally, acetate (p<0.01), butyrate (p<0.05), valerate (p = 0.01), and total SCFAs (p = 0.01) were upregulated in the RPS5 treatment group Conclusion: Feeding 5% RPS altered bacterial community composition and promoted gut health in weaned piglets. Thus, resistant starch as a feed additive may prevent diarrhea in piglets during weaning.

PM2.5 in poultry houses synergizes with Pseudomonas aeruginosa to aggravate lung inflammation in mice through the NF-κB pathway

  • Li, Meng;Wei, Xiuli;Li, Youzhi;Feng, Tao;Jiang, Linlin;Zhu, Hongwei;Yu, Xin;Tang, Jinxiu;Chen, Guozhong;Zhang, Jianlong;Zhang, Xingxiao
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.46.1-46.18
    • /
    • 2020
  • Background: High concentrations of particulate matter less than 2.5 ㎛ in diameter (PM2.5) in poultry houses is an important cause of respiratory disease in animals and humans. Pseudomonas aeruginosa is an opportunistic pathogen that can induce severe respiratory disease in animals under stress or with abnormal immune functions. When excessively high concentrations of PM2.5 in poultry houses damage the respiratory system and impair host immunity, secondary infections with P. aeruginosa can occur and produce a more intense inflammatory response, resulting in more severe lung injury. Objectives: In this study, we focused on the synergistic induction of inflammatory injury in the respiratory system and the related molecular mechanisms induced by PM2.5 and P. aeruginosa in poultry houses. Methods: High-throughput 16S rDNA sequence analysis was used for characterizing the bacterial diversity and relative abundance of the PM2.5 samples, and the effects of PM2.5 and P. aeruginosa stimulation on inflammation were detected by in vitro and in vivo. Results: Sequencing results indicated that the PM2.5 in poultry houses contained a high abundance of potentially pathogenic genera, such as Pseudomonas (2.94%). The lung tissues of mice had more significant pathological damage when co-stimulated by PM2.5 and P. aeruginosa, and it can increase the expression levels of interleukin (IL)-6, IL-8, and tumor necrosis factor-α through nuclear factor (NF)-κB pathway in vivo and in vitro. Conclusions: The results confirmed that poultry house PM2.5 in combination with P. aeruginosa could aggravate the inflammatory response and cause more severe respiratory system injuries through a process closely related to the activation of the NF-κB pathway.

Potential of Antifungal Lactic Acid Bacteria Isolated from Kimchi as Cheese Starters (김치 분리 항진균 유산균의 치즈 스타터로서 이용 가능성)

  • Oh, Hyun Hee;Huh, Chang Ki;Choi, Ha Nuel;Yang, Hee Sun;Bae, In Hyu;Lee, Jai Sung;Jeong, Yong Seob;Lee, Nam Keun;Jung, Hoo Kil
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.133-141
    • /
    • 2013
  • This study was performed to identify the cheese starter potential of antifungal lactic acid bacteria isolated from Kimchi. Eight fungi were isolated from cheese or the cheese ripening room, and identified as Penicillium and Cladosporium by ITS-5.8S rDNA analysis. Twenty-two lactic acid bacteria species with antifungal activity were isolated from Kimchi, and identified as Lactobacillus and Pediococcus by 16S rRNA sequence analysis. Six lactic acid bacteria species were selected (L. sakei subsp. ALJ011, L. sakei subsp. ALI033, L. sakei subsp. ALGy039, P. pentosaceus ALJ015, P. pentosaceus ALJ024, and P. pentosaceus ALJ026) based on higher antifungal activity from the initial 22 species. Out of the six identified species, L. sakei subsp. ALI033 had the highest antifungal activity. For growth of the six lactic acid bacteria, optimal temperature and pH were $30{\sim}37^{\circ}C$ and 7.0, respectively. Proteolytic activities of the six lactic acid bacteria were almost as strong as the commercial strain Str. thermophilus Body-1. Coagulative activities of L. sakei subsp. ALI033, P. pentosaceus ALJ015, and P. pentosaceus ALJ024 were higher than those of L. sakei subsp. ALJ011, L. sakei subsp. ALGy039, and P. pentosaceus ALJ026. The acid resistance of L. sakei subsp. was higher than that of P. pentosaceus. The major organic acid component of the lactic acid bacteria culture medium was lactic acid.

  • PDF

Microbial Community Analysis of Tarak, a Fermented Milk Product (우리나라 전통 발효유 타락의 미생물 균총 분석)

  • Lim, Goo-Sang;Lee, Kyung-Soo;Jang, Hye-Jin;Jung, Jin-Kyung;Lim, Ji-Young;Chun, TaeHoon;Han, Young-Sook;Oh, Se-Wook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1109-1114
    • /
    • 2013
  • Microbial community analysis was performed on Tarak, a traditional Korean fermented milk product, by 16S rDNA cloning and pyrosequencing to obtain basic data for the standardization and systematization of the Tarak manufacturing process. Microbial analysis of the prokaryotic community revealed a slight difference in microbial abundance between Bontarak (n) and Tarak (n+1), but Firmicute was dominant at the phylum level. At the genus level, the Lactobacillus and Leuconostoc genera constituted over 90% of the population in Bontarak, but Lactococcus was the dominant genus in Tarak. Bontarak and Tarak showed further differences at the species level. Leuconostoc citreum was the dominant species in Bontarak, constituting 40% of the population. In eukaryotic community analysis, all samples were composed of Ascomycota at the phylum level. At the genus level, Saccharomyces was dominant in Bontarak (85% of the population), while Issatchenkia was dominant in Tarak (95% of the population). At the species level, Saccharomyces cerevisiae was detected at a relative abundance in Bontarak (82%), and Pichia kudriavzevii was the dominant species in Tarak, with a relative abundance of 95%. Sensory evaluation indicated that Tarak had a better appearance and texture than Bontarak. As sweetness was not significantly different between the two samples just slightly higher in Tarak, this was likely due to a significant decrease in sourness in Tarak. These results suggest that the microbial community used affects the quality of Tarak produced. Thus, a stable microbial community must be maintained for the production of Tarak with consistent quality.

Detection of Copy Number Variation of the KIT Gene in the Landrace Breed using an Quantitative Oligonucleotide Ligation Assay(qOLA) (Quantitative Oligonucleotide Ligation Assay(qOLA)를 이용한 Landrace 품종의 KIT 유전자 반복수 변이 탐지)

  • Seo, B.Y.;Kim, J.H.;Nahm, D.W.;Yoo, C.K.;Lee, S.H.;Lee, J.B.;Lim, H.T.;Jung, E.J.;Cho, I.C.;Heo, K.N.;Jeon, J.T.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.559-568
    • /
    • 2007
  • Recently, copy number variations (CNV) of genes or genomic segments have been intensively studied and various analysis methods have been developed. In this study, quantitative oligonucleotide ligation assay (qOLA) was applied to investigate CNV of KIT gene in the Landrace breed. A combined assay using qOLA and pyrosequencing, 6 genotype classes, I1/I1 or I3/i (IBe), I1/I2 or I3/IP, I1/I3, I1/IP or I2/i (IBe), I2/I2and I2/IP, were identified from 44 Landrace pigs. Genotype assignment using grouping features of measurements on a scatter plot showed 100% agreement with those using a statistical assignment by PROC FASTCLUS procedure implemented in the SAS package. Two versions (3100 and 3130) of ABI sequencers gave the same genotyping results, indicating there was no influence on qOLA by different versions of instrument, however, the means of standard deviation and coefficient of variation from the qOLA on a ABI 3130 (2.33 and 4.10) was lower than those from the qOLA on a ABI 3100 (2.67 and 4.81). Effect of proteinase K treatment on the PCR product followed by qOLA was very clear because noise peaks were disappeared and the observed ration fit better to the reference ratio corresponding to each genotype.