• 제목/요약/키워드: r-러닝

검색결과 355건 처리시간 0.03초

증류공정 내부 온도 예측을 위한 머신 러닝 모델 개발 (Development of Machine Learning Model for Predicting Distillation Column Temperature)

  • 권혁원;오광철;정용철;조형태;김정환
    • 공업화학
    • /
    • 제31권5호
    • /
    • pp.520-525
    • /
    • 2020
  • 본 연구에서는 증류공정의 제품 생산단 온도 예측을 위한 머신러닝 기반 모델을 개발하였다. 증류공정의 제어는 제품 생산단의 온도를 통해 이루어지고 있어 제어를 위해 정확한 온도 예측이 필요하다. 증류공정에서 온도는 다양한 변수들과 복잡한 비선형의 관계를 형성하고 있으며 시계열 데이터의 특성이 있어 이를 예측하기 위해 순환신경망 기반 알고리즘을 이용하였다. 모델 개발 과정에서 적절한 예측 알고리즘을 선정하기 위해 세 가지 순환신경망 기반 알고리즘과 배치 사이즈 조절하여 제품 생산단 온도를 예측하기 위한 가장 적저한 모델을 선정하였다. LSTM128 모델이 제품 생산단 온도를 예측하기 위한 가장 적절한 모델로 선정되었다. 선정된 모델을 활용하여 실제 공정 운전데이터에 적용한 결과 RMSE 0.0791, R2 0.924의 성능을 보였다.

머신러닝 기반 신체 계측정보를 이용한 CT 피폭선량 예측모델 비교 (Comparison of CT Exposure Dose Prediction Models Using Machine Learning-based Body Measurement Information)

  • 홍동희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권6호
    • /
    • pp.503-509
    • /
    • 2020
  • This study aims to develop a patient-specific radiation exposure dose prediction model based on anthropometric data that can be easily measurable during CT examination, and to be used as basic data for DRL setting and radiation dose management system in the future. In addition, among the machine learning algorithms, the most suitable model for predicting exposure doses is presented. The data used in this study were chest CT scan data, and a data set was constructed based on the data including the patient's anthropometric data. In the pre-processing and sample selection of the data, out of the total number of samples of 250 samples, only chest CT scans were performed without using a contrast agent, and 110 samples including height and weight variables were extracted. Of the 110 samples extracted, 66% was used as a training set, and the remaining 44% were used as a test set for verification. The exposure dose was predicted through random forest, linear regression analysis, and SVM algorithm using Orange version 3.26.0, an open software as a machine learning algorithm. Results Algorithm model prediction accuracy was R^2 0.840 for random forest, R^2 0.969 for linear regression analysis, and R^2 0.189 for SVM. As a result of verifying the prediction rate of the algorithm model, the random forest is the highest with R^2 0.986 of the random forest, R^2 0.973 of the linear regression analysis, and R^2 of 0.204 of the SVM, indicating that the model has the best predictive power.

고추 작물의 정밀 질병 진단을 위한 딥러닝 모델 통합 연구: YOLOv8, ResNet50, Faster R-CNN의 성능 분석 (Integrated Deep Learning Models for Precise Disease Diagnosis in Pepper Crops: Performance Analysis of YOLOv8, ResNet50, and Faster R-CNN)

  • 서지인;심현
    • 한국전자통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.791-798
    • /
    • 2024
  • 본 연구의 목적은 YOLOv8, ResNet50, Faster R-CNN 모델을 활용하여 고추 작물의 질병을 진단하고, 각 모델의 성능을 비교하는 것이다. 첫 번째 모델은 YOLOv8을 사용하여 질병을 진단하였고, 두 번째 모델은 ResNet50을 단독으로 사용하였다. 세 번째 모델은 YOLOv8과 ResNet50을 결합하여 질병을 진단하였으며, 네 번째 모델은 Faster R-CNN을 사용하여 질병을 진단하였다. 각 모델의 성능은 정확도, 정밀도, 재현율, F1-Score 지표로 평가된다. 연구 결과, YOLOv8과 ResNet50을 결합한 모델이 가장 높은 성능을 보였으며, YOLOv8 단독 모델도 높은 성능을 나타냈다.

시계열 분석 딥러닝 알고리즘을 적용한 낙동강 하굿둑 염분 예측 (Prediction of Salinity of Nakdong River Estuary Using Deep Learning Algorithm (LSTM) for Time Series Analysis)

  • 우정운;김연중;윤종성
    • 한국해안·해양공학회논문집
    • /
    • 제34권4호
    • /
    • pp.128-134
    • /
    • 2022
  • 낙동강 하굿둑은 올해 2022년 해수 유입기간을 매월 대조기마다로 확대, 하굿둑 상류 15 km 이내로 기수역 조성을 목표로 운영되고 있다. 목표 기수역 조성구간 및 염수피해 방지를 위한 신속한 의사결정을 위해 본 연구에서는 딥러닝 알고리즘 Long Short-Term Memory(LSTM)을 적용하여 낙동대교(하굿둑 상류 약 5 km)지점의 염분 예측을 수행하였다. 창녕·함안보 방류량 등 낙동강 하구역의 시·공간적 특성을 반영하기 위한 입력데이터를 구축하였으며, Sequence length에 따른 정도 변화를 통해 낙동강 하구역의 수리학적 특성을 고려한 최적모델을 구축하였다. 예측 정확도는 결정계수(R-squred)와 RMSE(root mean square error) 이용하여 통계분석을 실시하였으며. Sequence length가 12일 때 R-squred 0.997, RMSE 0.122로 가장 정도가 높았으며, 선행 예측시간은 12시간 간격까지 R -squred 0.93 이상으로 높은 정도를 보였다.

회전 경계박스 기능의 변형 FASTER R-CNN 딥러닝 알고리즘을 이용한 암석 CT 영상 내 자동 균열 탐지 (Automatic Fracture Detection in CT Scan Images of Rocks Using Modified Faster R-CNN Deep-Learning Algorithm with Rotated Bounding Box)

  • 추엔 팜;장리;염선;신휴성
    • 터널과지하공간
    • /
    • 제31권5호
    • /
    • pp.374-384
    • /
    • 2021
  • 본 논문에서는 암석시료의 CT 촬영 이미지상의 균열을 자동으로 탐지하는 새로운 인공지능 딥러닝 기법을 제안한다. 본 제안 기법은 2단계 딥러닝 객체인식 알고르즘인 Faster R-CNN을 기반으로 회전 가능한 경계박스(bounding box) 개념을 도입하여 알고리즘을 개조하였다. 회전 경계박스의 도입은 관심 균열 영역 밖의 배경의 불균질성 및 균열의 크기와 형태에 영향을 받는 딥러닝 객체인식기법 상의 고유한 어려움을 극복하기 위한 핵심 역할을 한다. 본 회전형 경계박스의 사용은 일반적으로 사용되는 영상 수평축과 평행한 경계박스 사용의 경우와 비교하여 긴 형태의 균열 형상 특성에 매우 잘 부합된다. 즉, 좋지않은 영향을 끼치는 경계박스 내 균열 이외 배경영역의 비율을 최소화 시킬 수 있다. 이외에도, 회전 경계박스의 추가적인 이점은 인식된 균열의 방향에 따라 회전하여 추론되는 경계박스를 통해 균열의 방향과 길이에 대한 정보를 직접적으로 얻을 수 있다. 본 제안기법의 적용성을 검증하기 위하여, 이미지상에서 매우 불균질한 화강암 시료에 인공적으로 균열을 발생시킨 다수의 암석시료 영상을 딥러닝 학습에 사용하고 추론 성능 실험을 진행하였다. 그 외에도, 동일 조건에서 사암과 셰일 암석 시료에도 적용하여 검증하였다. 결론적으로, 제안된 기법을 통해 균열 객체 인식의 평균 추론정확도(mAP)값이 0.89 정도 수준의 우수한 추론 성능을 보였으며, 기존 기법에 비해 추론된 경계박스 내 균열과 배경 영역의 비율 측면에서 배경의 비율이 획기적으로 최소화되는 유리한 추론 검증 결과를 보였다.

한국어 기술문서 분석을 위한 BERT 기반의 분류모델 (BERT-based Classification Model for Korean Documents)

  • 황상흠;김도현
    • 한국전자거래학회지
    • /
    • 제25권1호
    • /
    • pp.203-214
    • /
    • 2020
  • 최근 들어 기술개발 현황, 신규기술 분야 출현, 기술융합과 학제 공동연구, 기술의 트렌드 변화 등을 파악하기 위해 R&D 과제정보, 특허와 같은 기술문서의 분류정보가 많이 활용되고 있다. 이러한 기술문서를 분류하기 위해 주로 텍스트마이닝 기법들이 활용되어 왔다. 그러나 기존 텍스트마이닝 방법들로 기술문서를 분류하기 위해서는 기술문서들을 대표하는 특징들을 직접 추출해야 하는 한계점이 있다. 따라서 본 연구에서는 딥러닝 기반의 BERT모델을 활용하여 기술문서들로부터 자동적으로 문서 특징들을 추출한 후, 이를 문서 분류에 직접 활용하는 모델을 제안하고, 이에 대한 성능을 검증하고자 한다. 이를 위해 텍스트 기반의 국가 R&D 과제 정보를 활용하여 BERT 기반 국가 R&D 과제의 중분류코드 예측 모델을 생성하고 이에 대한 성능을 평가한다.

Faster R-CNN과 이미지 오그멘테이션 기법을 이용한 화염감지에 관한 연구 (A Study on Flame Detection using Faster R-CNN and Image Augmentation Techniques)

  • 김재중;류진규;곽동걸;변선준
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1079-1087
    • /
    • 2018
  • 최근 딥러닝(deep learning) 인공지능 기반의 컴퓨터 비전 분야는 각종 영상분석 분야에서 화제로 떠오르고 있다. 본 연구에서는 딥러닝 기반의 여러 이미지 인식 알고리즘 중 이미지 내에서 객체를 검출하는 데 사용되는 Faster R-CNN 알고리즘을 이용하여 화재 이미지에서 불꽃을 검출하고자 한다. 학습 과정에서 소량의 데이터셋을 통한 화재검출 정확도 향상을 위해 이미지 오그멘테이션(image augmentation) 기법을 이용하고, 이미지 오그멘테이션을 6가지 유형별로 나누어 학습하여 정확도, 정밀도, 검출률을 비교하였다. 그 결과, 이미지 오그멘테이션의 종류가 늘어날수록 검출률이 상승하지만, 다른 객체 검출 모델들의 일반적인 정확도와 검출률의 관계와 마찬가지로 오검출율 또한 10%에서 최대 30%까지 증가하게 됨을 확인하였다.

머신러닝 기반 고용량 I-131의 용량 예측 모델에 관한 연구 (A Study on Predictive Modeling of I-131 Radioactivity Based on Machine Learning)

  • 유연욱;이충운;김정수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권2호
    • /
    • pp.131-139
    • /
    • 2023
  • High-dose I-131 used for the treatment of thyroid cancer causes localized exposure among radiology technologists handling it. There is a delay between the calibration date and when the dose of I-131 is administered to a patient. Therefore, it is necessary to directly measure the radioactivity of the administered dose using a dose calibrator. In this study, we attempted to apply machine learning modeling to measured external dose rates from shielded I-131 in order to predict their radioactivity. External dose rates were measured at 1 m, 0.3 m, and 0.1 m distances from a shielded container with the I-131, with a total of 868 sets of measurements taken. For the modeling process, we utilized the hold-out method to partition the data with a 7:3 ratio (609 for the training set:259 for the test set). For the machine learning algorithms, we chose linear regression, decision tree, random forest and XGBoost. To evaluate the models, we calculated root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) to evaluate accuracy and R2 to evaluate explanatory power. Evaluation results are as follows. Linear regression (RMSE 268.15, MSE 71901.87, MAE 231.68, R2 0.92), decision tree (RMSE 108.89, MSE 11856.92, MAE 19.24, R2 0.99), random forest (RMSE 8.89, MSE 79.10, MAE 6.55, R2 0.99), XGBoost (RMSE 10.21, MSE 104.22, MAE 7.68, R2 0.99). The random forest model achieved the highest predictive ability. Improving the model's performance in the future is expected to contribute to lowering exposure among radiology technologists.

모바일환경에서의 스마트러닝 시스템 개발 전략 (Strategy for Developing Smart Learning System under Mobile Environment)

  • 민성기;양승빈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(D)
    • /
    • pp.16-19
    • /
    • 2011
  • 최근에 Smart Phone 보급의 급격한 확산에 따라 2012년경에는 국내에서 약 2천만명 정도가 Smart Phone을 사용할 것이며 전 세계적으로도 약 3억5천만대 정도의 사용자가 Smart Phone을 사용할 것으로 예상되고 있다. 이러한 Smart Phone에서 시작된 u-Device 변혁은 Smart Phone, Tablet-PC, Smart TV, Desk Top Computer를 연계한 Seamless 학습 환경 및 최근의 N-Screen 환경의 구현을 가능하게 하고 있다.

창작로봇(UCR) 기반 친환경 r-러닝 서비스 실천방안 (Action Plans of Green r-Learning Services based on UCR(User Created Robots))

  • 김진오;한정혜
    • 한국IT서비스학회지
    • /
    • 제10권3호
    • /
    • pp.21-30
    • /
    • 2011
  • Expectation for improvement of creativity and problem-solving capability has increased the creative robotics classes in the form of after-school activity in more than half of total elementary schools. While Ministry of Education, Science and Technology has promoted 'Green IT Guidelines' as a part of 'Eco-friendly Green School Development Project', the Green issues have not been considered enough in those creative robotics classes. In this paper, we would like to address the Green issues, especially in the r-Learning services based on UCR (User Created Robots). First, trend of green IT education, r-Learning services and UCR are reviewed. And the current status of eco-related operations and teachers' perception in the robotics classes of elementary schools is investigated. Examples of Green UCR are also searched and green programs based on the three kinds of UCR, UC-TR, UC-AR, UC-CR, are explored. Finally, we propose action plans to promote the UCR-based r-Learning service reflecting green issues.