• Title/Summary/Keyword: quill

Search Result 26, Processing Time 0.017 seconds

Multi-Phase Optimization of Quill Type Machine Structures(1) (Static Compliance Analysis & Multi-Objective Function Optimization) (퀼형 공작기계구조물의 다단계 최적화(1) (정강성 해석 및 다목적함수 최적화))

  • Lee, Yeong-U;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.155-160
    • /
    • 2001
  • To achieve high precision cutting as well as production capability in the machine tool, it is needed to develop excellent rigidity statically, dynamically and thermally as well. In order to predict the qualitative behavior of a machine tool, simultaneous analysis of mechanics and heat transfer is required. Generally, machine tool designers have solved designing problems based on partial estimation of the specified rigidity. This study clears the inter-relationship between therm, and propose multi-phase optimization of machine tool structure using a genetic algorithm. The multi-phase solution method is consists of a series of mechanical design problem. At this first phase of static design problem, multi-objective optimization for the purpose of minimization of the total weight and static compliance minimization is solved using the Pareto Genetic Algorithm.

  • PDF

Facial Rejuvenation Enhancing Cheek Lift

  • Bellity, Philippe;Bellity, Jonathan
    • Archives of Plastic Surgery
    • /
    • v.44 no.6
    • /
    • pp.559-563
    • /
    • 2017
  • Supported by recent literature on the signs of aging of the middle and lower face, our clinical research has documented a loss of volume of the deep structural components of the central face and a progressive descent of the nasolabial fat and the jowl fat, leading to facial fragmentation. The signs that appear around the age of 45 to 50 years are well targeted by the mini-invasive technique described here. We focused on refitting the jowl fat and the nasolabial fat associated with cutaneous tightening. The use of absorbable barbed sutures (Quill) led to significant improvements, enabling the fitting of fat on fat. In the past 4 years, 167 operations were performed using this technique. The clinical results were very satisfactory, yielding a natural effect caused by the mobilization and strong fixation of the nasolabial fat and the jowl fat in the direction opposite to their displacement.

Optimization of Magnetic Abrasive Polishing Process using Run to Run Control (Run to Run 제어 기법을 이용한 자기연마 공정 관리)

  • Ahn, Byoung-Woon;Park, Sung-Jun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.22-28
    • /
    • 2009
  • In order to optimize the polishing process, Run to Run control scheme has been applied to the micro mold polishing in this study. Also, to fully understand the effect of parameters on the surface roughness a design of experiment is performed. By linear approximation of main factors such as gap and rotational speed of micro quill, EWMA (Exponential Weighted Moving Average) gradual mode controller is adopted as a optimizing tool. Consequently, the process converged quickly at a target value of surface roughness Ra 10nm and Rmax 50nm, and was hardly affected by unwanted process noises like initial surface quality and wear of magnetic abrasives.

Study on the Accelerating Effect of an Accelerating Unit in Grinding using Machining Center (MC를 이용한 연삭시 증속기의 증속효과에 관한 연구)

  • Seo, Yeong-Il;Kim, Chang-Su;Choi, Hwan;Lee, Jong-Chan;Cheong, Seon-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.103-108
    • /
    • 1999
  • A problem in the grinding with a small diametric wheel is the decrease of wheel speed. In order to resolve this problem, an accelerating unit which increases the wheel speed is recommended. In this paper, the accelerating effect of an accelerating unit has been investigated through the side-cut grinding experiments performed with a vitrified bonded CBN wheel in a machining center(MC). The static stiffness, normal force, and machining error were measured in the experiments. As the accelerating unit is attached on the column of machining center, the static stiffness of tool system is largely decreased. But as the wheel speed increased by the accelerating unit, this problem is overcome and machining efficiency is improved. The lesser the quill stiffness was, the higher the accelerating effect became.

  • PDF

Development of Perforating Die for Manufacturing Fine Multi-perforated type Nail Files (미세 다수공 타입의 네일파일 제조용 퍼퍼레이팅 금형 개발)

  • Kim Sei-Hwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.42-46
    • /
    • 2004
  • 0.5mm thick steel is used to manufacture nail files. The first process is blanking the blank and then make about 300 holes of 0.8$\~$1.0mm in diameter. This process depends mainly on etching which takes $33\%$ of manufacturing cost and it can make manufacturing cost rise. The residual etching reagent is not environmentally friendly and the steel material is apt to rust as well. The key accomplishments of this research are to change the material from steel to stainless and develop a progressive perforating die in place of etching process.

  • PDF

A Compensation Control Method Using Neural Network for Mechanical Deflection Error in SCARA Robot with Random Payload

  • Lee, Jong Shin
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.7-16
    • /
    • 2011
  • This study proposes the compensation method for the mechanical deflection error of a SCARA robot. While most studies on the related subject have dealt with the development of a control algorithm for improvement of robot accuracy, this study presents the control method reflecting the mechanical deflection error which is predicted in advance. The deflection at the end of the gripper of SCARA robot is caused by the self-weights and payloads of Arm 1, Arm 2 and quill. If the deflection is constant even though robot's posture and payload vary, there may not be a big problem on robot accuracy because repetitive accuracy, that is relative accuracy, is more important than absolute accuracy in robot. The deflection in the end of the gripper varies as robot's posture and payload change. That's why the moments $M_x$, $M_y$ and $M_z$ working on every joint of a robot vary with robot's posture and payload size. This study suggests the compensation method which predicts the deflection in advance with the variations in robot's posture and payload using neural network. To do this, I chose the posture of robot and the payloads at random, found the deflections by the FEM analysis, and then on the basis of this data, made compensation possible by predicting deflections in advance successively with the variations in robot's posture and payload through neural network learning.