• Title/Summary/Keyword: queue management

Search Result 316, Processing Time 0.028 seconds

A Buffer Management Algorithm based on the GOP Pattern and the Importance of each Frame to Provide QoS for Streaming Services in WLAN (WLAN에서 스트리밍 서비스이 QoS를 제공하기 위한 GOP 패턴 및 프레임 중요도에 따른 버퍼 관리 기술)

  • Kim, Jae-Hyun;Lee, Hyun-Jin;Lee, Kyu-Hwan;Roh, Byeong-Hee
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.372-375
    • /
    • 2008
  • IEEE 802.11e standardized the EDCA mechanism to support the priority based QoS. And the virtual collision handler schedules the transmission time of each MAC frame using the internal back-off window according to the access category(AC). This can provides the differentiated QoS to real-time services at the medium traffic load condition. However, the transmission delay of MAC frame for real-time services may be increased as the traffic load of best effort service increases. It becomes more critical when the real-time service uses a compressed mode video codec such as moving picture experts group(MPEG) 4 codec. That is because each frame has the different importance. That is, the I-frame has more information as compared with the P- and the B-frame. In this paper, we proposed a buffer management algorithm based on the frame importance and the delay bound. The proposed algorithm is consisted of the traffic regulator based on the dual token bucket algorithm and the active queue management algorithm. The traffic regulator reduces the transmission rate of lower AC until that the virtual collision handler can transmit an I-frame. And the active queue management discards frame based on the importance of each frame and the delay bound of head of line(HoL) frame when the channel resource is insufficient.

  • PDF

A Method of Generating Traffic Travel Information Based on the Loop Detector Data from COSMOS (실시간신호제어시스템 루프검지기 수집정보를 활용한 소통정보 생성방안에 관한 연구)

  • Lee, Choul-Ki;Lee, Sang-Soo;Yun, Byeong-Ju;Song, Sung-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.34-44
    • /
    • 2007
  • Many urban cities deployed ITS technologies to improve the efficiency of traffic operation and management including a real-time franc control system (i.e., COSMOS). The system adopted loop detector system to collect traffic information such as volume, occupancy time, degree of saturation, and queue length. This paper investigated the applicability of detector information within COSMOS to represent the congestion level of the links. Initially, link travel times obtained from the field study were related with each of detector information. Results showed that queue length was highly correlated with link travel time, and direct link travel time estimation using the spot speed data produced high estimation error rates. From this analysis, a procedure was proposed to estimate congestion level of the links using both degree of saturation and queue length information.

  • PDF

Analysis of a relative rate switch algorithm for the ABR service in ATM networks (ATM망에서 ABR서비스를 위한 Relative Rate 스위치 알고리즘의 성능 해석)

  • 김동호;조유제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.5
    • /
    • pp.1384-1396
    • /
    • 1998
  • This paper ivestigates the performance of a relative rate (RR) switch algorithm for the rate-based available bit rate (ABR) flow control in asynchronous transfer mode (ATM) networks. A RR switch may notify the network congestion status to the source by suing the congestion indication (CI) bit or no increase (NI)bit in the backward RM (BRM) cells. A RR switch can be differently implemented according to the congestion detectio and notification methods. In this paper, we propose three implementation schemes for the RR switch with different congestion detection and notification methods, and analyze the allowed cell rate (ACR) of a source and the queue length of a switch in steady state. In addition, we derive the upper and lower bounds for the maximum and minimum queue lengths for each scheme respectively, and evaluate the effects of the ABR parameter values on the queue length. Furthermore, we suggest the range of the rage increase factor (RIF) and rate decrease factor (RDF) parameter values which can prevent buffer overflow and underflow at a switch.

  • PDF

An Efficient VM-Level Scaling Scheme in an IaaS Cloud Computing System: A Queueing Theory Approach

  • Lee, Doo Ho
    • International Journal of Contents
    • /
    • v.13 no.2
    • /
    • pp.29-34
    • /
    • 2017
  • Cloud computing is becoming an effective and efficient way of computing resources and computing service integration. Through centralized management of resources and services, cloud computing delivers hosted services over the internet, such that access to shared hardware, software, applications, information, and all resources is elastically provided to the consumer on-demand. The main enabling technology for cloud computing is virtualization. Virtualization software creates a temporarily simulated or extended version of computing and network resources. The objectives of virtualization are as follows: first, to fully utilize the shared resources by applying partitioning and time-sharing; second, to centralize resource management; third, to enhance cloud data center agility and provide the required scalability and elasticity for on-demand capabilities; fourth, to improve testing and running software diagnostics on different operating platforms; and fifth, to improve the portability of applications and workload migration capabilities. One of the key features of cloud computing is elasticity. It enables users to create and remove virtual computing resources dynamically according to the changing demand, but it is not easy to make a decision regarding the right amount of resources. Indeed, proper provisioning of the resources to applications is an important issue in IaaS cloud computing. Most web applications encounter large and fluctuating task requests. In predictable situations, the resources can be provisioned in advance through capacity planning techniques. But in case of unplanned and spike requests, it would be desirable to automatically scale the resources, called auto-scaling, which adjusts the resources allocated to applications based on its need at any given time. This would free the user from the burden of deciding how many resources are necessary each time. In this work, we propose an analytical and efficient VM-level scaling scheme by modeling each VM in a data center as an M/M/1 processor sharing queue. Our proposed VM-level scaling scheme is validated via a numerical experiment.

A Basic Study on the Minimum Speed Limit for Reducing Congestion in Waterways (항로 내 혼잡상황 감소를 위한 최저속력 제한에 관한 기초 연구)

  • Park, Sang-won;Park, Young-soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.141-143
    • /
    • 2019
  • Vessel Traffic Service (VTS) increases the efficiency of maritime traffic in terms of reducing marine accidents and the efficient use of port facilities. This means that ports and waterways have their own capacities and can be safely adapted to their capacity through proper traffic management of the VTS. Proper traffic management can reduce the number of vessels and unnecessary waiting in ports, which can lead to economic benefits of ups and port terminals. On the other hand, Korean ports and waterways have restrictions on the maximum speed for safety, but there is no restriction on the minimum speed. However, ships that operate at low speeds in ports and waterways may be able to occupy long periods of operational routes, which may impede efficient port operation. Therefore, the purpose of this study is to propose the minimum speed of ship for efficient port and waterway use. To this end, we reviewed the current laws and systems and proposed the appropriate minimum speed in the waterway using the theory of queue.

  • PDF

Dynamic Power Management based on Stochastic Processes (추계적 프로세스 기반 동적 전력 관리)

  • Ro, Cheul Woo;Kim, Kyung Min;Paul, Muthusi
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.197-200
    • /
    • 2007
  • Dynamic power management reduces the power consumption of the system by switching system components into different power states, which have different power consumption levels. The main function of a power management is to decide when to perform state transitions. In this paper, a power management model based on stochastic processes is introduced. This model is developed using SRN (Stochastic Reward Nets), which has facilities to represent system queue and various modeling functions.

  • PDF

Design of High-Speed VOQ Management Scheme for High Performance Cell/Packet Switch (고성능 셀/패킷 스위치를 위한 고속 VOQ 관리기 설계)

  • 정갑중;이범철
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.369-372
    • /
    • 2001
  • This paper presents the design of high-speed virtual output queue(VOQ) management scheme for high performance cell/packet switch, which has a serial cross bar structure. The proposed VOQ management scheme has been designed for wire-speed routing with a pipelined buffer management. It provides the tolerance of requests and grants data transmission latency between the VOQ manager and central arbiter using a new request control method that is based on a high-speed shifter. The designed VOQ manager has been implemented in a field programmable gate array chip with a 77MHz operating frequency, a 900-pin fine ball grid array package, and 16$\times$16 switch size.

  • PDF

A Study on Dynamic Bandwidth Allocation Mechanism for an Enhancement of E-PON's Upstream Throughput (E-PON의 상향 대역전송 성능 향상을 위한 동적대역할당 메커니즘 연구)

  • Lee, Dong-Yeal;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8B
    • /
    • pp.547-552
    • /
    • 2007
  • IEEE ratified IEEE802.3ah as the standard of E-PON, while it leaved the specific method of upstream bandwidth allocation as a role of implementation vendors. Many experts have researched the method of enhancing upstream bandwidth throughput and released related papers. This paper presents another novel mechanism to enhance upstream throughput. This mechanism performs the management of upstream queues by giving the minimum bandwidth of different level to each queue. In order to process packets on each queue we adopted a modified weighted DRR technology. By doing so, the transmission throughput of upstream packets can be largely enhanced. The experimental simulation of this mechanism showed an enhancement of bandwidth utilization more than 10% in comparison to legacy method.

A Study on the Voice Traffic Efficiency and Buffer Management by Priority Control in ATM Multiplexer (ATM 멀티플렉서에서 우선순위 제어에 의한 음성전송효율 및 버퍼관리에 관한 연구)

  • 이동수;최창수;강준길
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.2
    • /
    • pp.354-363
    • /
    • 1994
  • This paper describes the method that voice traffic is served efficiently in BISDN. Voice is divided into talkspurt and silent period, and it is possible to transmit olny talksurt by the speech activity detection. This paper described the voice traffic control algorithm in the ATM network where cell discarding method is applied to the embedded ADPCM voice data. For traffic control, the cell discarding was used over low priority cells when it overflows the queue threshold. To estimate the efficiency of traffic control algorithm, the computer simuation was performed with cell loss probability, queue length and mean delay as performance parameters. The embedded ADPCM voice coding and cell disscarding resulted in improving the voice cell traffic efficiency and the dynamic control over network congestion.

  • PDF

A Modified Random Early Detection Algorithm: Fuzzy Logic Based Approach

  • Yaghmaee Mohammad Hossein
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.337-352
    • /
    • 2005
  • In this paper, a fuzzy logic implementation of the random early detection (RED) mechanism [1] is presented. The main objective of the proposed fuzzy controller is to reduce the loss probability of the RED mechanism without any change in channel utilization. Based on previous studies, it is clear that the performance of RED algorithm is extremely related to the traffic load as well as to its parameters setting. Using fuzzy logic capabilities, we try to dynamically tune the loss probability of the RED gateway. To achieve this goal, a two-input-single-output fuzzy controller is used. To achieve a low packet loss probability, the proposed fuzzy controller is responsible to control the $max_{p}$ parameter of the RED gateway. The inputs of the proposed fuzzy controller are 1) the difference between average queue size and a target point, and 2) the difference between the estimated value of incoming data rate and the target link capacity. To evaluate the performance of the proposed fuzzy mechanism, several trials with file transfer protocol (FTP) and burst traffic were performed. In this study, the ns-2 simulator [2] has been used to generate the experimental data. All simulation results indicate that the proposed fuzzy mechanism out performs remarkably both the traditional RED and Adaptive RED (ARED) mechanisms [3]-[5].