KSII Transactions on Internet and Information Systems (TIIS)
/
제9권1호
/
pp.407-420
/
2015
Natural Language Question Answering (NLQA) and Prescriptive Analytics (PA) have been identified as innovative, emerging technologies in 2015 by the Gartner group. These technologies require knowledge bases that consist of data that has been extracted from unstructured texts. Every business requires a knowledge base for business analytics as it can enhance companies' competitiveness in their industry. Most intelligent or analytic services depend a lot upon on knowledge bases. However, building a qualified knowledge base is very time consuming and requires a considerable amount of effort, especially if it is to be manually created. Another problem that occurs when creating a knowledge base is that it will be outdated by the time it is completed and will require constant updating even when it is ready in use. For these reason, it is more advisable to create a computerized knowledge base. This research focuses on building a computerized knowledge base for business using a supervised learning and rule-based method. The method proposed in this paper is based on information extraction, but it has been specialized and modified to extract information related only to a business. The business knowledge base created by our system can also be used for advanced functions such as presenting the hierarchy of technologies and products, and the relations between technologies and products. Using our method, these relations can be expanded and customized according to business requirements.
GuessWhat?!은 질문자와 답변자로 구성된 두 플레이어가 이미지를 보고 질문자에게 비밀로 감추어진 정답 물체에 대해 예/아니오/잘 모르겠음 셋 중 하나로 묻고 답하며, 정답 물체를 추려 나가는 문제이다. GuessWhat?!은 최근 컴퓨터 비전과 인공지능 대화 시스템의 테스트베드로서 컴퓨터 비전과 인공지능 학계의 많은 관심을 받았다. 본 논문에서, 우리는 GuessWhat?! 게임 프레임워크가 가지는 특성에 대해 논의한다. 더 나아가, 우리는 제안된 틀을 기반으로 GuessWhat?!의 간단한 solution을 제안한다. 사람이 평균 4~5개 정도의 질문을 통하여 맞추는 이 문제에 대하여, 우리가 제안한 방법은 2개의 질문만으로 기존 딥러닝 기반 기술의 성능을 상회하는 성능을 보이며, 5개의 질문이 허용되면 인간 수준의 성능을 능가한다.
최근 거대 언어 모델을 기반으로 한 다양한 인공지능 챗봇이 출시되고 있다. 챗봇은 대화형 프롬프트를 통해 사용자에게 빠르고 간편하게 정보를 제공할 수 있다는 이점을 가지고 있어서 질의응답, 글쓰기, 프로그래밍 등 다양한 분야에서 활용되고 있다. 그러나 최근에는 챗봇의 취약점을 악용하는 '프롬프트 주입 공격'이 제안되었는데, 이는 챗봇이 기입력된 지시사항을 위반하도록 하는 공격이다. 이와 같은 공격은 거대 언어 모델 내부의 기밀 정보를 유출하거나 또 다른 악성 행위를 유발할 수 있어서 치명적이다. 반면 이들에 대한 취약점 여부가 한국어 프롬프트를 대상으로는 충분히 검증되지 않았다. 따라서 본 논문에서는 널리 사용되는 챗봇인 ChatGPT를 대상으로 악성 한국어 프롬프트를 생성하여 공격을 수행해보고, 이들에 대한 실행 가능성을 분석하고자 한다. 이를 위해 기존에 제안된 프롬프트 주입 공격 기법을 분석하여 악의적인 한국어 프롬프트를 자동으로 생성하는 시스템을 제안하고자 한다. 특히 유해 표현을 유도하는 악성 프롬프트를 중점적으로 생성하였고 이들이 실제 유효함을 보이도록 한다.
지식베이스를 구축하는 작업은 도메인 전문가가 온톨로지 스키마를 이해한 뒤, 직접 지식을 정제하는 수작업이 요구되는 만큼 비용이 많이 드는 활동이다. 이에, 도메인 전문가 없이 다양한 웹 환경으로부터 질의에 대한 답변 정보를 추출하기 위한 자동화된 시스템의 연구개발의 필요성이 제기되고 있다. 기존의 정보 추출 관련 연구들은 웹에 존재하는 다양한 형태의 문서 중 학습데이터와 상이한 형태의 문서에서는 정보를 효과적으로 추출하기 어렵다는 한계점이 존재한다. 또한, 기계 독해와 관련된 연구들은 문서에 정답이 있는 경우를 가정하고 질의에 대한 답변정보를 추출하는 경우로서, 문서의 정답포함 여부를 보장할 수 없는 실제 웹의 비정형 문서로부터의 정보추출에서는 낮은 성능을 보인다는 한계점이 존재한다. 본 연구에서는 지식베이스 확장을 위하여 웹에 존재하는 멀티소스 비정형 문서로부터 질의에 대한 정보를 추출하기 위한 시스템의 개발 방법론을 제안하고자 한다. 본 연구에서 제안한 방법론은 "주어(Subject)-서술어(Predicate)"로 구분된 질의에 대하여 위키피디아, 네이버 백과사전, 네이버 뉴스 3개 웹 소스로부터 수집된 비정형 문서로부터 관련 정보를 추출하며, 제안된 방법론을 적용한 시스템의 성능평가를 위하여, Wu and Weld(2007)의 모델을 베이스라인 모델로 선정하여 성능을 비교분석 하였다. 연구결과 제안된 모델이 베이스라인 모델에 비해, 위키피디아, 네이버 백과사전, 네이버 뉴스 등 다양한 형태의 문서에서 정보를 효과적으로 추출하는 강건한 모델임을 입증하였다. 본 연구의 결과는 현업 지식베이스 관리자에게 지식베이스 확장을 위한 웹에서 질의에 대한 답변정보를 추출하기 위한 시스템 개발의 지침서로서 실무적인 시사점을 제공함과 동시에, 추후 다양한 형태의 질의응답 시스템 및 정보추출 연구로의 확장에 기여할 수 있을 것으로 기대한다.
대량의 말뭉치를 비지도 방식으로 학습하여 자연어 지식을 획득할 수 있는 사전학습 언어모델(Pre-trained Language Model)은 최근 자연어 처리 모델 개발에 있어 매우 일반적인 요소이다. 하지만, 여타 기계학습 방식의 성격과 동일하게 사전학습 언어모델 또한 학습 단계에 사용된 자연어 말뭉치의 특성으로부터 영향을 받으며, 이후 사전학습 언어모델이 실제 활용되는 응용단계 태스크(Downstream task)가 적용되는 도메인에 따라 최종 모델 성능에서 큰 차이를 보인다. 이와 같은 이유로, 법률, 의료 등 다양한 분야에서 사전학습 언어모델을 최적화된 방식으로 활용하기 위해 각 도메인에 특화된 사전학습 언어모델을 학습시킬 수 있는 방법론에 관한 연구가 매우 중요한 방향으로 대두되고 있다. 본 연구에서는 금융(Finance) 도메인에서 다양한 자연어 처리 기반 서비스 개발에 활용될 수 있는 금융 특화 사전학습 언어모델의 학습 과정 및 그 응용 방식에 대해 논한다. 금융 도메인 지식을 보유한 언어모델의 사전학습을 위해 경제 뉴스, 금융 상품 설명서 등으로 구성된 금융 특화 말뭉치가 사용되었으며, 학습된 언어 모델의 금융 지식을 정량적으로 평가하기 위해 토픽 분류, 감성 분류, 질의 응답의 세 종류 자연어 처리 데이터셋에서의 모델 성능을 측정하였다. 금융 도메인 말뭉치를 기반으로 사전 학습된 KB-BERT는 KoELECTRA, KLUE-RoBERTa 등 State-of-the-art 한국어 사전학습 언어 모델과 비교하여 일반적인 언어 지식을 요구하는 범용 벤치마크 데이터셋에서 견줄 만한 성능을 보였으며, 문제 해결에 있어 금융 관련 지식을 요구하는 금융 특화 데이터셋에서는 비교대상 모델을 뛰어넘는 성능을 보였다.
대용량 문서에서 포함된 정보를 추출하는 작업은 정보검색분야 뿐만 아니라 질의응답과 요약분야에서 매우 유용하다. 정보 추출 분야 중 관계추출 기술이 중요하게 인식되고 있으나, 기계학습모델을 기반으로 개발하기 위한 학습집합과 개발된 기술을 평가하기 위한 평가집합의 부재로 연구에 난항을 겪고 있다. 본 논문은 한국과학기술정보연구원(KISTI)이 보유하고 있는 해외학술지 데이터를 기반으로 과학기술용어에 대한 관계추출 기술 시스템을 개발하고 평가하기 위한 테스트 컬렉션(KREC2008) 구축을 위한 구축방법 및 절차를 기술한다. 해외 학술지 데이터의 초록을 대상으로 기술용어를 추출하였고, 기술용어의 쌍의 관계에 해당되는 단어를 Wordnet에 매핑하여 동사의 개념을 일반화하는 여러 개의 개념화된 후보군을 추출하였다. 평가기준 및 절차 교육이 이루어진 평가자가 개념화된 후보군에서 적합하다고 판단되는 "개념"을 "관계"로 지정하였다. Wordnet을 이용하여 "관계"에 대한 후보군을 생성하였기때문에, 일관성 있는 관계설정의 품질의 향상시켰고 비전문가도 쉽게 테스트컬렉션을 구축할 수 있는 방법을 제공하였다. 현재 KREC2008은 정보추출 연구자 및 개발자에게 공개되어 있으며, 과학기술분야 관계추출 시스템의 개발 및 신뢰도 평가를 목적으로 하는 학술대회의 연구결과 발표 및 제품 비교 등에 활용될 예정이다.
본 논문에서 챗봇에서 사용하는 AI알고리즘과 자연어처리 방법을 분류하고 제시하고 챗봇 구현에 사용할 수 있는 프레임워크에 대해서도 기술한다. 챗봇은 사용자 인터페이스를 대화방식으로 구성하여 입력된 문자열을 해석하고 입력된 문자열에 적절한 답을 학습된 데이터에서 선택하여 출력하는 구조의 시스템이다. 최근 콜센터와 주문 업무에 적용하여 인건비를 감소하고 정확한 업무를 할 수 있는 장점이 있다. 하지만 질문에 대한 적정한 답변 집합을 생성하기 위해 학습이 필요하며 이를 위해 상당한 계산 기능을 갖는 하드웨어가 필요하다. 개발을 하는 업체는 물론 AI분야 개발을 학습하는 학생들의 실습은 한계가 있다. 현재 챗봇은 기존의 전통적인 업무를 대체하고 있으며 시스템을 이해하고 구현하는 실습과정이 필요한 실정이다. 정형화되어 있는 데이터에 대해서만 응답을 하는 수준을 넘어 딥러닝 등의 기술을 적용하여 비정형 데이터를 학습시켜 질문에 대한 응답의 정확성을 높이기 위해 RNN과 Char-CNN 등을 사용해야한다. 챗봇을 구현하기 위해서는 이와 같은 이론을 이해하고 있어야한다. 본 논문에서는 단기간에 챗봇 코딩교육에 활용할 수 있는 방안과 기존 개발자, 학생들이 챗봇 구현을 할 수 있는 플랫폼을 활용하여 학생들이 전체시스템을 구현 예를 제시하였다.
자연언어처리의 목적은 컴퓨터가 자연어를 이해할 수 있도록 하여, 인간에게 다양한 정보를 정확하고 빠르게 전달할 수 있도록 하고자 하는 것이다. 이를 위해서는 언어의 의미를 정확히 파악하여야 하는데, 어휘 의미 중의성 해소가 필수적인 기술이다. 본 연구는 상호정보량과 기 분석된 복합명사 의미사전에 기반한 동음이의어 의미 중의성 해소를 위한 기술을 소개한다. 사전 뜻풀이를 이용하는 기존 기술들은 어휘들간의 정확한 매칭에 의존하기 때문에 자료 부족 현상이 심각하였다. 그러나, 본 연구에서는 어휘들간의 연관계수인 상호정보량을 이용함으로써 이 문제를 완화시켰다. 또한, 언어적인 특징을 반영하기 위해서 상호정보량을 가지는 어휘 쌍의 비율 가중치, 의미 별 비율 가중치와 뜻풀이의 길이 가중치를 사용하였다. 그리고, 복합명사를 구성하는 단일명사들은 서로의 의미를 제약한다는 것에 기반하여 고빈도 복합명사에 대해서 의미를 부착한 의미사전을 구축하였고, 이를 동음이의어 중의성 해소에 활용하였다. 본 시스템의 평가를 위해 질의응답 평가셋의 200 여 개의 질의와 정답단락을 대상으로 동음이의어 의미 중의성 해소 평가셋을 구축하였다. 평가셋에 기반하여 네 유형의 실험을 수행하였다. 실험 결과는 상호 정보량만을 이용하였을 때 65.06%의 정확률을 보였고, 가중치를 활용하였을 때 85.35%의 정확률을 보였다. 또한, 복합명사 의미분석 사전을 활용하였을 때는 88.82%의 정확률을 보였다.
개체 링킹은 입력된 질의에 존재하는 개체를 표현한 개체 표현(entity mention)을 지식베이스에 존재하는 개체와 연결하여 의미를 파악하는 연구이다. 개체 링킹에 관한 연구는 지식 베이스 구축 문제, 다중 표현 문제, 개체 연결 중의성 문제, NIL 개체 인식 문제가 존재한다. 본 연구에서는 지식 베이스 구축 문제와 다중 표현 문제를 해결하기 위해 위키피디아를 기반으로 개체 이름 사전을 구축한다, 또한, 문맥 유사도, 의미적 관련성, 단서 단어 점수, 개체 표현의 개체명 타입 유사도, 개체 이름 매칭 점수, 개체인기도 점수 자질들을 기반으로 SVM(support vector machine)을 학습하여, NIL 개체를 인식하는 문제와 개체 연결 중의성을 해소하는 방법을 제안한다. 구축한 지식 베이스를 기반으로 제안한 두 방법을 순차적으로 적용하였을 때 좋은 개체 링킹 성능을 얻었다. 개체 링킹 시스템의 성능은 NIL 개체 인식 성능이 83.66%, 중의성 해소 성능이 90.81%의 F1 점수를 보였다.
최근 생성형 AI 기술의 발전으로 인해 대형 언어 모델(Large Language Model, LLM)의 활용 및 도입이 확대되고 있는 상황에서 기존 연구들은 기업내부 데이터의 활용에 대한 실제 적용사례나 구현방법을 찾아보기 힘들다. 이에 따라 본 연구에서는 가장 많이 이용되고 있는 LangChain 프레임워크를 이용한 LLM 애플리케이션 아키텍처를 활용하여 생성형 AI 서비스를 구현하는 방법을 제시한다. 이를 위해 LLM의 활용을 중심으로, 정보 부족 문제를 극복하는 다양한 방법을 검토하고 구체적인 해결책을 제시하였다. 이를 위해 파인튜닝이나 직접 문서 정보를 활용하는 방법을 분석하며, 이러한 문제를 해결하기 위한 RAG 모델을 활용한 정보 저장 및 검색 방법에 대해 주요단계에 대해 자세하게 살펴본다. 특히, RAG 모델을 활용하여 정보를 벡터저장소에 저장하고 검색하기 위한 방법으로 유사문맥 추천 및 QA시스템을 활용하였다. 또한 구체적인 작동 방식과 주요한 구현 단계 및 사례를 구현소스 및 사용자 인터페이스까지 제시하여 생성형 AI 기술에 대한 이해를 높였다. 이를 통해 LLM을 활용한 기업내 서비스 구현에 적극적으로 활용할 수 있도록 하는데 의미와 가치가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.