• Title/Summary/Keyword: query clustering

Search Result 120, Processing Time 0.029 seconds

A Study on Clustering Query-answer Documents with Structural Features (문서구조를 이용한 질의응답문서 클러스터링에 관한 연구)

  • Choi, Sang-Hee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.39 no.4
    • /
    • pp.105-118
    • /
    • 2005
  • As the number of users who ask and give answers in the query-answer documents retrieval system is growing exponentially, the query-answer document become a crucial information resource, as a new type of information retrieval service. A query-answer document Consists of three structural parts : a query, explanation on query, and answers Chosen by users who asked the query. To identify the role of each structural part in representing the topics of documents, the three structural parts were clustered automatically and the results of several clustering tests were compared in this study.

A Clustered Dwarf Structure to Speed up Queries on Data Cubes

  • Bao, Yubin;Leng, Fangling;Wang, Daling;Yu, Ge
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.2
    • /
    • pp.195-210
    • /
    • 2007
  • Dwarf is a highly compressed structure, which compresses the cube by eliminating the semantic redundancies while computing a data cube. Although it has high compression ratio, Dwarf is slower in querying and more difficult in updating due to its structure characteristics. We all know that the original intention of data cube is to speed up the query performance, so we propose two novel clustering methods for query optimization: the recursion clustering method which clusters the nodes in a recursive manner to speed up point queries and the hierarchical clustering method which clusters the nodes of the same dimension to speed up range queries. To facilitate the implementation, we design a partition strategy and a logical clustering mechanism. Experimental results show our methods can effectively improve the query performance on data cubes, and the recursion clustering method is suitable for both point queries and range queries.

A Study on the Robust Content-Based Musical Genre Classification System Using Multi-Feature Clustering (Multi-Feature Clustering을 이용한 강인한 내용 기반 음악 장르 분류 시스템에 관한 연구)

  • Yoon Won-Jung;Lee Kang-Kyu;Park Kyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.115-120
    • /
    • 2005
  • In this paper, we propose a new robust content-based musical genre classification algorithm using multi-feature clustering(MFC) method. In contrast to previous works, this paper focuses on two practical issues of the system dependency problem on different input query patterns(or portions) and input query lengths which causes serious uncertainty of the system performance. In order to solve these problems, a new approach called multi-feature clustering(MFC) based on k-means clustering is proposed. To verify the performance of the proposed method, several excerpts with variable duration were extracted from every other position in a queried music file. Effectiveness of the system with MFC and without MFC is compared in terms of the classification accuracy. It is demonstrated that the use of MFC significantly improves the system stability of musical genre classification performance with higher accuracy rate.

The Effectiveness of Hierarchic Clustering on Query Results in OPAC (OPAC에서 탐색결과의 클러스터링에 관한 연구)

  • Ro, Jung-Soon
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.38 no.1
    • /
    • pp.35-50
    • /
    • 2004
  • This study evaluated the applicability of the static hierarchic clustering model to clustering query results in OPAC. Two clustering methods(Between Average Linkage(BAL) and Complete Linkage(CL)) and two similarity coefficients(Dice and Jaccard) were tested on the query results retrieved from 16 title-based keyword searchings. The precision of optimal dusters was improved more than 100% compared with title-word searching. There was no difference between similarity coefficients but clustering methods in optimal cluster effectiveness. CL method is better in precision ratio but BAL is better in recall ratio at the optimal top-level and bottom-level clusters. However the differences are not significant except higher recall ratio of BAL at the top-level duster. Small number of clusters and long chain of hierarchy for optimal cluster resulted from BAL could not be desirable and efficient.

A Clustering Method Based on Path Similarities of XML Data (XML 데이타의 경로 유사성에 기반한 클러스터링 기법)

  • Choi Il-Hwan;Moon Bong-Ki;Kim Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.342-352
    • /
    • 2006
  • Current studies on storing XML data are focused on either mapping XML data to existing RDBMS efficiently or developing a native XML storage. Some native XML storages store each XML node with parsed object form. Clustering, the physical arrangement of each object, can be an important factor to increase the performance with this storing method. In this paper, we propose re-clustering techniques that can store an XML document efficiently. Proposed clustering technique uses path similarities among data nodes, which can reduce page I/Os when returning query results. And proposed technique can process a path query only using small number of clusters as possible instead of using all clusters. This enables efficient processing of path query because we can reduce search space by skipping unnecessary data. Finally, we apply existing clustering techniques to store XML data and compare the performance with proposed technique. Our results show that the performance of XML storage can be improved by using a proper clustering technique.

A Theoretical Study of Designing Thesaurus Browser by Clustering Algorithm (클러스터링을 이용한 시소러스 브라우저의 설계에 대한 이론적 연구)

  • Seo, Hwi
    • Journal of Korean Library and Information Science Society
    • /
    • v.30 no.3
    • /
    • pp.427-456
    • /
    • 1999
  • This paper deals with the problems of information retrieval through full-test database which arise from both the deficiency of searching strategies or methods by information searcher and the difficulties of query representation, generation, extension, etc. In oder to solve these problems, we should use automatic retrieval instead of manual retrieval in the past. One of the ways to make the gap narrow between the terms by the writers and query by the searchers is that the query should be searched with the terms which the writers use. Thus, the preconditions which should be taken one accorded way to solve the problems are that all areas of information retrieval such as should taken one accorded way to solve the problems are that all areas of information retrieval such as contents analysis, information structure, query formation, query evaluation, etc. should be solved as a coherence way. We need to deal all the ares of automatic information retrieval for the efficiency of retrieval thought this paper is trying to solve the design of thesaurus browser. Thus, this paper shows the theoretical analyses about the form of information retrieval, automatic indexing, clustering technique, establishing and expressing thesaurus, and information retrieval technique. As the result of analyzing them, this paper shows us theoretical model, that is to say, the thesaurus browser by clustering algorithm. The result in the paper will be a theoretical basis on new retrieval algorithm.

  • PDF

P2P query processing method between ontologies in internet environment (인터넷상의 온톨로지간의 P2P 질의처리 방안)

  • Kim, Byung-Gon;Oh, Sung-Kyun
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.239-247
    • /
    • 2009
  • In simple topology in network system, query should be delivered to all linked peers for query processing. This causes waste of transmission band width and throughput of each peer. To overcome this, as well as query processing strategy, efficient routing technique to deliver query to proper peer is needed. For efficient routing, clustering of peers in P2P networks is important. Clustering of P2P network bases on that combines peers that have similar characteristics in same cluster reduces quantity of message in network than assign peer for cluster randomly. In this paper, we propose clustering techniques for ontology based P2P query processing. Similarity measure point, cluster index structure, and query processing steps in ontology based P2P cluster environment are proposed.

  • PDF

A Study on Representative Skyline Using Connected Component Clustering

  • Choi, Jong-Hyeok;Nasridinov, Aziz
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • Skyline queries are used in a variety of fields to make optimal decisions. However, as the volume of data and the dimension of the data increase, the number of skyline points increases with the amount of time it takes to discover them. Mainly, because the number of skylines is essential in many real-life applications, various studies have been proposed. However, previous researches have used the k-parameter methods such as top-k and k-means to discover representative skyline points (RSPs) from entire skyline point set, resulting in high query response time and reduced representativeness due to k dependency. To solve this problem, we propose a new Connected Component Clustering based Representative Skyline Query (3CRS) that can discover RSP quickly even in high-dimensional data through connected component clustering. 3CRS performs fast discovery and clustering of skylines through hash indexes and connected components and selects RSPs from each cluster. This paper proves the superiority of the proposed method by comparing it with representative skyline queries using k-means and DBSCAN with the real-world dataset.

Semantic Conceptual Relational Similarity Based Web Document Clustering for Efficient Information Retrieval Using Semantic Ontology

  • Selvalakshmi, B;Subramaniam, M;Sathiyasekar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3102-3119
    • /
    • 2021
  • In the modern rapid growing web era, the scope of web publication is about accessing the web resources. Due to the increased size of web, the search engines face many challenges, in indexing the web pages as well as producing result to the user query. Methodologies discussed in literatures towards clustering web documents suffer in producing higher clustering accuracy. Problem is mitigated using, the proposed scheme, Semantic Conceptual Relational Similarity (SCRS) based clustering algorithm which, considers the relationship of any document in two ways, to measure the similarity. One is with the number of semantic relations of any document class covered by the input document and the second is the number of conceptual relation the input document covers towards any document class. With a given data set Ds, the method estimates the SCRS measure for each document Di towards available class of documents. As a result, a class with maximum SCRS is identified and the document is indexed on the selected class. The SCRS measure is measured according to the semantic relevancy of input document towards each document of any class. Similarly, the input query has been measured for Query Relational Semantic Score (QRSS) towards each class of documents. Based on the value of QRSS measure, the document class is identified, retrieved and ranked based on the QRSS measure to produce final population. In both the way, the semantic measures are estimated based on the concepts available in semantic ontology. The proposed method had risen efficient result in indexing as well as search efficiency also has been improved.

Interest Based Clustering Mechanism for Hybrid P2P (하이브리드 P2P를 위한 관심분야 기반 클러스터링)

  • Lee, Lee-Sub
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.1
    • /
    • pp.69-75
    • /
    • 2006
  • P2P services occupy more then 50% of the internet traffics. A huge number of query packets are generated since pure P2P based models rely on message flooding for their query mechanisms. In this study, the numbers of query messages generated in the pure P2P and hybrid P2P model are analyzed. The results show that hybrid P2P models also could suffer from message flooding. To reduce the message flooding, this study proposes an interest based clustering mechanism for hybrid P2P services. By applying this clustering algorithm, it could reduce 99.998% of the message flooding. The proposed algorithm also reduces the cost of the joining operations by storing previous supernodes.

  • PDF