• Title/Summary/Keyword: quenching

Search Result 1,432, Processing Time 0.025 seconds

Microstructural and corrosion behavior of D3 tools steel and 440C SS for blade application

  • Nur Maizatul Shima Adzali;Nurul Abidah Mohamad Khapeli;Alina Rahayu Mohamed
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.183-194
    • /
    • 2024
  • D3 tools steel and 440C stainless steel (SS) are normally being employed for application such as knife blade and cutting tools. These steels are iron alloys which have high carbon and high chromium content. In this study, lab work focused on the microstructural and corrosion behavior of D3 tools steel and 440C SS after went through heat treatment processes. Heat treatments for both steels were started with normalizing at 1020 ℃, continue with hardening at 1000 ℃followed by oil quenching. Cryogenic treatment was carried out in liquid nitrogen for 24 hours. The addition of cryogenic heat treatment is believed to increase the hardness and corrosion resistance for steels. Both samples were then tempered at two different tempering temperatures, 160 ℃ and 426 ℃. For corrosion test, the samples were immersed in NaCl solution for 30 days to study the corrosion behavior of D3 tool steel and 440C SS after heat treatment. The mechanical properties of these steels have been investigated using Rockwell hardness machine before heat treatment, after heat treatment (before corrosion) and after corrosion test. Microstructure observation of samples was carried out by scanning electron microscopy. The corrosion rate of these steels was calculated after the corrosion test completed. From the results, the highest hardness is observed for D3 tool steel which tempered at 160 ℃(54.1 HRC). In terms of microstructural analysis, primary carbide and pearlite in the as-received samples transform to tempered martensite and cementite after heat treatment process. From this research, for corrosion test, heat treated 440C SS sample tempered with 426 ℃possessed the excellent corrosion resistance with corrosion rate 0.2808 mm/year.

Influence of various metal oxides (PbO, Fe2O3, MgO, and Al2O3) on the mechanical properties and γ-ray attenuation performance of zinc barium borate glasses

  • Aljawhara H. Almuqrin;K.A. Mahmoud;U. Rilwan;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2711-2717
    • /
    • 2024
  • The current work aims to fabricate metal oxide-doped (PbO, Fe2O3, MgO, and Al2O3, each of which boasts a purity of 99%) zinc barium borate glasses through the melt quenching technique at the 1000 ℃ melting temperature. The results showed that adding 5 mol.% of metal oxides PbO, Fe2O3, Al2O3, and MgO increases the density of the zinc barium borate glasses. Additionally, the fabricated glasses' mechanical properties were determined based on the Makishima-Mackenzie model, which proved that the highest mechanical properties were achieved for glasses doped with Al2O3 compounds. The mechanical moduli for the glasses doped with Al2O3 reach 80.95 GPa (Young), 59.90 GPa (bulk), 31.75 GPa (shear), and 102.23 GPa (longitudinal). Additionally, the Al2O3-doped glasses' microhardness reaches 4.77 GPa. Moreover, estimation of the fabricated glasses' gamma-ray shielding capacity utilized Monte Carlo simulation. The highest linear attenuation coefficients are 29.132, 19.906, 19.243, and 18.923 cm-1 obtained at 0.033 MeV for glasses dopped by PbO, Fe2O3, MgO, and Al2O3, respectively. Therefore, glasses doped with 5 mol.% of PbO have high gamma-ray shielding capacities followed by glasses doped by Fe2O3.

A Study on Treatment of Soils Contaminated by Diesel and Kerosene Using Hydrogen Peroxide Catalyzed by Naturally Occurring Iron Minerals (디젤과 등유로 오염된 토양의 철광석으로 촉매화된 과수를 이용한 처리에 관한 연구)

  • Choi, Jin-Ho;Kim, Sang-Dae;Moon, Sei-Ki;Kong, Sung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.24-29
    • /
    • 1999
  • Naturally-occurring iron minerals, goethite, magnetite, and hydrogen peroxide were used to catalyze and initiate Fenton-like oxidation of silica sand contaminated with mixture of diesel and kerosene in batch system. Optimal reaction conditions were investigated by varying pH(3, 7), $H_2O_2$ concentration(0%, 1%, 7%, 15%, 35%), initial contaminant concentration(0.2, 0.5, 1.0 g-mixture of diesel and kerosene/ kg-soil), and iron mineral contents(1, 5, and 10 wt % magnetite or goethite). Contaminant degradations in silica sand-iron mineral-$H_2O_2$ systems were identified by determining total petroleum hydrocarbon(TPH) concentration. The optimal pH of the system was 3. The system which iron minerals were the only iron source was more efficient than the system with $FeSO_4$ solution due to lower $H_2O_2$ consumption. In case of initial contaminant concentration of 1g-contaminant/kg-soil with 5 wt % magnetite, addition of 0%, 1%, 7%, 15%, and 35% of $H_2O_2$ showed 0%, 24.5%, 44%, 52%, and 70% of TPH reduction in 8 days, respectively. When the mineral contents were varied 0, 1, 5, and 10wt%, removal of contaminants were 0%, 33.5%, 50%, and 60% for magnetite and 0%, 29%, 41%, and 53% for goethite, respectively. Reaction of magnetite system showed higher degradation than that of goethite system due to dissolution of iron and mixed presence of iron(II) and iron(III); however, dissolved iron precipitated on the surface of iron mineral and seemed to cause reducing electron transfer activity on the surface and quenching $H_2O_2$. The system using goethite has better treatment efficiency due to less $H_2O_2$ consumption. When cach system was mixed by shaker, removal of contaminants increased by 41% for magnetite and 30% for goethite. Results of this study showed catalyzed $H_2O_2$ system made in-situ treatment of soil contaminated with petroleum possible without addition of iron source since natural soils generally contain iron minerals such as magnetite and goethite.

  • PDF

Antioxidative Effects and Component Analysis of Graviola (Annona muricata) Leaf Extract/Fractions (그라비올라(Annona muricata) 잎 추출물 및 분획물의 항산화 활성과 성분 분석)

  • Park, So Hyun;Kim, Ji Min;Kim, Jin Hwan;Oh, Yoon Soo;Joo, Dong Hee;Lee, Eun Young;Shin, Hyuk Soo;Kim, A Rang;Lee, Sang Lae;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.309-320
    • /
    • 2017
  • In this study, the antioxidative effects and component analysis of 50% ethanol extract, ethyl acetate fraction and aglycone fraction obtained from Annona muricata leaf were investigated. Free radical scavenging activities were performed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, total antioxidant capacities were estimated using luminol-dependent chemiluminescence assay and $^1O_2$ quenching effects were estimated. Free radical scavenging activities ($FSC_{50}$) of 50% ethanol extract, ethyl acetate fraction and aglycone fraction were 45.6, 29.8 and $18.0{\mu}g/mL$, and total antioxidant capacities ($OSC_{50}$) were 4.4, 1.1 and $2.8{\mu}g/mL$, respectively. As a result of $^1O_2$ quenching experiment, ethyl acetate and aglycone fraction showed similar activities to L-ascorbic acid used as a comparative control. The cellular protective effects of 50% ethanol extract on the $^1O_2-induced$ cellular damage of human erythrocytes were exhibited at concentration-dependent ($5-50{\mu}g/mL$). TLC and HPLC were used to analyse components in the ethyl acetate fraction and aglycone fraction of Annona muricata leaf. In ethyl acetate fraction, rutin (quercetin-3-O-rutinoside), kaempferol-3-O-neohesperidoside, nicotiflorin (kaempferol-3-O-rutinoside), p-coumaric acid were identified. In aglycone fraction, kaempferol was identified. These results suggest that the extracts of Annona muricata leaf have the applicability as antioxidant cosmeceutical ingredients.

Fabrication of Gd2O2S:Tb fine scintillator film and evaluation of image quality for resolution improvement of X-ray imaging based on CMOS (CMOS 기반 X선 영상의 해상력 향상을 위한 Gd2O2S:Tb 미세형광체 필름 제작 및 영상 질 평가)

  • Kang, Sang-Sik;Choi, Young-Zoon;Jung, Bong-Jae;No, Si-Cheul;Cho, Chan-Hoon;Yoon, In-Chan;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.283-287
    • /
    • 2011
  • In this study, fine $Gd_2O_2S$:Tb powder was synthesized by using a low temperature solution-combustion method for a high-resolution digital x-ray imaging detector. From the fabricated phosphor power, the fine scintillator films was fabricated by particle sedimentation method and was investigated the luminescent property. From the experimental results of relative light output as a function of terbium concentration, the highest luminescent efficiency has at 5 wt% Tb concentration, and luminescent intensity decreased rapidly according to quenching effect about higher Tb concentration. Also, the relative light output of $270{\mu}m$-$Gd_2O_2S$:Tb film has 2945 pC/$cm^2$/mR. And light intensity was saturated at higher film thickness. Finally, to evaluate an image acquisition performance of fabricated phosphor, images were obtained by using commercial CMOS sensor and measured the MTF, NPS, and DQE. DQE(0 lp/mm) of fine phosphor film has 37%. But, DQE improvement of fine phosphor film is possible by resolving problem of film fabrication process and has a significant potential in the application of digital radiation imaging system later.

Experimental Study on Heat Flux Partitioning in Subcooled Nucleate Boiling on Vertical Wall (수직 벽면에서 과냉 핵비등 시 열유속 분배에 관한 실험적 연구)

  • Song, Junkyu;Park, Junseok;Jung, Satbyoul;Kim, Hyungdae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.465-474
    • /
    • 2014
  • To validate the accuracy of the boiling heat flux partitioning model, an experiment was performed to investigate how the wall heat flux is divided into the three heat transfer modes of evaporation, quenching, and single-phase convection during subcooled nucleate boiling on a vertical wall. For the experimental partitioning of the wall heat flux, the wall heat flux and liquid-vapor distributions were simultaneously obtained using synchronized infrared thermometry and the total reflection technique. Boiling experiments of water with subcooling of $10^{\circ}C$ were conducted under atmospheric pressure, and the results obtained at the wall superheat of $12^{\circ}C$ and average heat flux of $283kW/m^2$were analyzed. There was a large difference in the heat flux partitioning results between the experiment and correlation, and the bubble departure diameter and bubble influence factor, which account for a portion of the surrounding superheated liquid layer detached by the departure of a bubble, were found to be important fundamental boiling parameters.

Preparation and Luminescence Optimization of CeO2:Er/Yb Phosphor Prepared by Spray Pyrolysis (분무열분해법으로 CeO2:Er/Yb 형광체 제조 및 발광특성 최적화)

  • Jung, Kyeong Youl;Park, Jea Hoon;Song, Shin Ae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.319-325
    • /
    • 2015
  • Submicron-sized $CeO_2:Er^{3+}/Yb^{3+}$ upconversion phosphor particles were synthesized by spray pyrolysis, and their luminescent properties were characterized by changing the concentration of $Er^{3+}$ and $Yb^{3+}$. $CeO_2:Er^{3+}/Yb^{3+}$ showed an intense green and red emission due to the $^4S_{3/2}$ or $^2H_{11/2}{\rightarrow}^4I_{15/2}$ and $^4F_{9/2}{\rightarrow}^4I_{15/2}$ transition of $Er^{3+}$ ions, respectively. In terms of the emission intensity, the optimal concentrations of Er and Yb were 1.0 % and 2.0%, respectively, and the concentration quenching was found to occur via the dipole-dipole interaction. Upconversion mechanism was discussed by using the dependency of emission intensities on pumping powers and considering the dominant depletion processes of intermediate energy levels for the red and green emission with changing the $Er^{3+}$ concentration. An energy transfer from $Yb^{3+}$ to $Er^{3+}$ in $CeO_2$ host was mainly involved in ground-state absorption (GSA), and non-radiative relaxation from $^4I_{11/2}$ to $^4I_{13/2}$ of $Er^{3+}$ was accelerated by the $Yb^{3+}$ co-doping. As a result, the $Yb^{3+}$ co-doping led to greatly enhance the upconversion intensity with increasing ratios of the red to green emission. Finally, it is revealed that the upconversion emission is achieved by two photon processes in which the linear decay dominates the depletion of intermediate energy levels for green and red emissions for $CeO_2:Er^{3+}/Yb^{3+}$ phosphor.

Ho3+-Doped Amorphous Dielectrics:Emission and Excitation Spectra of the 1.6 μm Fluorescence (Ho3+ 첨가 비정질 유전체 : 1.6μm 헝광의 방출 및 여기 스펙트럼)

  • 최용규
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.618-622
    • /
    • 2004
  • Excitation spectra of the 1.6 rm emission originating from $Ho^{3+}$$^{5}$ I$_{5}$ \longrightarrow$^{5}$ I$_{7}$ transition in fluoride, sulfide, and selenide glasses were measured at wavelengths around 900nm where the fluorescing $^{5}$ I$_{5}$ level is located. In specific energy range where the frequency upconversion populating $^{5}$ F$_{1}$ state happens, the excitation efficiency of the 1.6 fm emission was deteriorated in fluoride and sulfide hosts. In selenide however spectral line shapes of the excitation spectrum and the '$^{5}$ I$_{8}$ \longrightarrow$^{5}$ I$_{5}$ absorption spectrum looked seemingly identical to each other. Differences in optical nonlinearity as well as electronic band gap energy of the host glasses used are responsible for the experimental observations. On the other hand, codoping of rare earths such as Tb$^{3+}$, Dy$^{3+}$, Eu$^{3+}$, and Nd$^{3+}$ was effective in decreasint the terminating $^{5}$ I$_{7}$ level lifetime. However, at the same time, some of the codopants increased unnecessary absorption at the 1.6 $\mu$m wavelengths via their ground state absorption. Though the lifetime quenching effect of Eu$^{3+}$ was moderate, it exhibited no additional extrinsic absorption at the 1.6 $\mu$m band.EX>m band.

GALAXIES ON DIET: FEEDBACK SIGNATURES IN RADIO-AGN HOST GALAXIES

  • Karouzos, Marios;Im, Myungshin;Trichas, Markos;Goto, Tomogotsu;Malkan, Matthew;Ruiz, Angel;Jeon, Yiseul;Kim, Ji Hoon;Lee, Hyung Mok;Kim, Seong Jin;Oi, Nagisa;Matsuhara, Hideo;Takagi, Toshinobu;Murata, Kazumi;Wada, Takehiko;Wada, Kensuke;Shim, Hyunjin;Hanami, Hitoshi;Serjeant, Stephen;White, Glenn;Pearson, Chris;Ohyama, Youichi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.201-203
    • /
    • 2017
  • There exists strong evidence supporting the co-evolution of central supermassive black holes and their host galaxies; however it is still under debate how such a relation comes about and whether it is relevant for all or only a subset of galaxies. An important mechanism connecting AGN to their host galaxies is AGN feedback, potentially heating up or even expelling gas from galaxies. AGN feedback may hence be responsible for the eventual quenching of star formation and halting of galaxy growth. A rich multi-wavelength dataset ranging from the X-ray regime (Chandra), to far-IR (Herschel), and radio (WSRT) is available for the North Ecliptic Pole field, most notably surveyed by the AKARI infrared space telescope, covering a total area on the sky of 5.4 sq. degrees. We investigate the star formation properties and possible signatures of radio feedback mechanisms in the host galaxies of 237 radio sources below redshift z = 2 and at a radio 1.4 GHz flux density limit of 0.1 mJy. Using broadband SED modelling, the nuclear and host galaxy components of these sources are studied simultaneously as a function of their radio luminosity. Here we present results concerning the AGN content of the radio sources in this field, while also offering evidence showcasing a link between AGN activity and host galaxy star formation. In particular, we show results supporting a maintenance type of feedback from powerful radio-jets.

Microstructure of borosilicate glass-ceramics containing EAF dust (EAF dust가 함유된 붕규산염계 결정화 유리의 미세구조 분석)

  • Ahn, Y.S.;Kang, S.G.;Kim, Y.T.;Lee, G.K.;Kim, J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.2
    • /
    • pp.82-87
    • /
    • 2006
  • Glassy specimen was obtained by melting and quenching a borosilicate glass frit miked with $10{\sim}80wt%$ EAF dust. The glass transition temperature, $T_g$ of glassy specimen was measured around $550^{\circ}C$ from the DTA curve and the eat treatment condition to crystallize a glassy specimen was selected as $700^{\circ}C$/1 hr. The spinel crystal peaks were found in XRD analysis for the glass containing dust > 70 wt%. For the glass-ceramics, however, the spinel peaks in a specimen containing dust > 40 wt%, and the spinel and willemite peaks in dust > 80 wt%. The crystals of several tens of nanometer with aspect ratio of $0.7{\sim}1.0$ were observed at a glassy specimen containing dust > 40 wt% by SEM which was not found by XRD analysis. For the glass-ceramics, the crystals were found in a specimen containing dust of even 10 wt% by SEM. The feature and distribution of crystals observed through the specimen for a glass-ceramics were diverse and not uniform. The crystals found in the glass-ceramics containing 70 wt% dust were hexahedral with an aspect ratio of around unity.