• Title/Summary/Keyword: quasiparticle

Search Result 18, Processing Time 0.018 seconds

Novel nonequilibrium microwave emission and current-voltage characteristics of $Bi_2$$Sr_2$Ca$Cu_2$$O_{8+d}$ intrinsic Josephson junction mesas

  • Kim, Sun-Mi;Lee, Kie-Jin;Bae, Myung-Ho;Lee, Hu-Jong;Cha, Deok-Joon;Takayuki Ishibashi;Katsuaki Sato;Kim, Jin-Tae
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.104-108
    • /
    • 2003
  • We have measured the transport properties of $Bi_2$$Sr_2$$CaCu_2$$O_{8+d}$ (BSCCO) intrinsic Josephson junction mesa. Transport measurements with current flow along the c-axis, perpendicular to the layer of mesa showed multi-branch structures on the current-voltage characteristics. For single intrinsic junctions, the microwave radiation appears in the form of three different modes of oscillations, which include Josephson emission, nonequilibrium broad emission and sharp coherent microwave emission. Mutual phase interactions between two-mesas structures of BSCCO intrinsic Josephson junctions were studied. The results were explained within the framework of the Josephson plasma excitation model due to quasiparticle injection.n.

  • PDF

Pseudogap behavior in interlayer tunneling spectroscopy in $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}$

  • Bae Myung-Ho;Choi Jae-Hyun;Lee Hu-Jong
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • A pseudogap in the normal-state quasiparticle density of states of $high-T_c$ superconductors has been revealed in many different kinds of experiments. The existence of the pseudogap and the superconducting gap, and the correlation between them has attracted considerable attention because they are believed to be a key to understanding the mechanism of the $high-T_c$ superconductivity. The interlayer tunneling spectroscopy, excluding the surface-dependent effect, is one of the most accurate means to examine the electron spectral characteristics both in the superconducting and the normal states. In this study, a new constant-temperature intrinsic tunneling spectroscopic technique, excluding the overheating effect using the in-situ temperature monitoring combined with the digital proportional-integral-derivative control, is introduced. The implication on the $high-T_c$ superconductivity of the detailed temperature dependencies of the observed spectral weight in $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}\;high-T_c$ material for overdoped and underdoped levels is discussed.

  • PDF

[ $Bi_2Sr_2CaCu_2O{8+\delta}$ ] Intrinsic Josephson Junctions in a Parallel Magnetic Field

  • Lee, J.H.;Chong, Yon-Uk;Lee, Su-Youn;Khim, Z.G.
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.110-114
    • /
    • 2000
  • We have investigated the Josephson vortex dynamics in $Bi_2Sr_2CaCu_2O{8+\delta}$ intrinsic Josephson junctions subjected to a magnetic field parallel to $CuO_2$ planes. We investigated mesas with $40\times40{\mu}m^2$ in size and containing 6 and 20. intrinsic junctions. The zero field I-V characteristics exhibited a typical hysteretic, multi-branched nature of the intrinsic Josephson effect. At high magnetic fields (H>1.5 T), I-V characteristics showed flux flow steps. The Swihart velocity obtained from this observation was about $4.2\times10^5$ m/s, which was the lowest mode electromagnetic wave velocity of N coupled stack. The experimental I-V curves fitted well into the simple model of Cherenkov radiation including Ohmic and non-linear dissipation terms. This suggests that the dissipation mechanism of Josephson vortex be due to both Cherenkov radiation and quasiparticle tunneling current.

  • PDF

Josephson Vortex Dynamics in Tilted Magnetic Fields (경사 자기장 하에서의 조셉슨 볼텍스 동역학)

  • Jin, Yong-Duk;Ki, Dong-Keun;Lee, Hu-Jong
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.140-145
    • /
    • 2008
  • We report on the Josephson vortex dynamics in $Bi_2Sr_2CaCuO_{8+\delta}$ natural Josephson junctions by c-axis tunneling measurements. Beside the quasiparticle branches in the current-voltage characteristics, a new set of multiple branches, referred to as Josephson-vortex-flow branches (JVFBs), are observed. The JVFBs emerge in an in-plane magnetic field above $H_0\;=\;{\Phi}_0/{\gamma}s^2$ and show highly hysteretic behavior, which can be explained in terms of the recently proposed dynamic-phase-separation model. In this work we examined the effect on the JVFBs by the presence of pancake vortices generated as the external magnetic field was applied slightly tilted from the in-plane direction. JVFBs were found to become larger and prominent with increasing pancake vortex density as the tilt angle increased, which were presumably caused by slowing down of a Josephson vortex lattice in the presence of pancake vortices.

  • PDF

Electromagnetic Property of a Heavy Fermion CePd2Si2 (헤비 페르미온 CePd2Si2의 전자기적 특성)

  • Jeong, Tae Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.399-402
    • /
    • 2019
  • The electromagnetic properties of heavy fermion $CePd_2Si_2$ are investigated using density functional theory using the local density approximation (LDA) and LDA+U methods. The Ce f-bands are located near the Fermi energy and hybridized with the Pd-3d states. This hybridization plays an important role in generating the physical characteristics of this compound. The magnetic moment of $CePd_2Si_2$ calculated within the LDA scheme does not match with the experimental result because of the strong correlation interaction between the f orbitals. The calculation shows that the specific heat coefficient underestimates the experimental value by a factor of 5.98. This discrepancy is attributed to the formation of quasiparticles. The exchange interaction between the local f electrons and the conduction d electrons is the reason for the formation of quasiparticles. The exchange interaction is significant in $CePd_2Si_2$, which makes the quasiparticle mass increase. This enhances the specific heat coefficient.

c-axis Tunneling in Intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ Single Crystals

  • Lee, Min-Hyea;Chang, Hyun-Sik;Doh, Yong-Joo;Lee, Hu-Jong;Lee, Woo;Choy, Jin-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.260-260
    • /
    • 1999
  • We compared c-axis tunneling characteristics of small stacked intrinsic Josephson junctions prepared on the surface of pristine, I-, and HgI$_2$-intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ (Bi2212) single crystals. The R(T) curves are almost metallic in I-Bi2212 specimens, but semiconducting in HgI$_2$-Bi2212 ones.· The transition temperatures were 82.0 K, 73.0 K, and 76.8 K for pristine Bi2212, I-Bi2212, and HgI2-Bi2212 specimens, respectively, consistent with p-T$_c$ phase diagram. Current-voltage (IV) characteristics of both kinds of specimens show multiple quasiparticle branches with well developed gap features, indicating Josephson coupling is established between neighboring CuO$_2$ planes. The critical current I$_c$ of I-Bi2212 is almost the same as of that of pristine crystals, but I$_c$ is much reduced in Hgl$_2$-Bi2212. In spite of expanded interlayer distances, the interlayer coupling is not significantly affected in I-Bi2212due to holes generated by iodine atoms. The coupling in HgI$_2$-Bi2212 is, however, weakened due to inertness of HgI$_2$ molecules and the expansion of interlayer distance. Relation between the superconducting transition temperature T$_c$ and the critical current I$_c$ seems to contradict Anderson's interlayer-pair-tunneling theory but agree with a modified version of it.

  • PDF

Search for the preformed-pair state in the pseudogap regime above T$_c$ using c-axis tunneling in Bi$_2$Sr$_2$CaCu$_2$O$_{8+d}$ single crystals

  • Chang, Hyun-Sik;Lee, Hu-Jong;Oda, MigaKu;Jang, Eue-Soon;Ido, Masayuki;Choy, Jin-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.85-85
    • /
    • 2000
  • The normal state of high-Tc superconducting materials has been believed to contain important clues to finding the correct mechanism of the high-Tc superconductivity. One example is the existence of pseudogap in the normal state even above Tc, as observed in various measurements such as photoemission spectroscopy and tunneling conductance. In this pseudogap regime the existence of preformed pairs only with local phase coherence has been debated. Recently Choi, Bang, and Campbell[1] have proposed the occurrence of the zero-bias conductance enhancement due to Andreev quasiparticle reflection from the preformed pairs even with the local phase coherence. In this study we examine the zero-bias enhancement of the differential conductance near or slightly above Tc, using c-axis tunneling in mesa structure of Bi2Sr20a0u208+d single crystals. In slightly overdoped samples zero-bias conductance enhancement (ZBCE) has been observed over a range of 2 K above Tc. In contrast, in underdoped samples with Tc${\sim}$72K the ZBCE appears over a range of 5-6 K above Tc, a much wider temperature range than in overdoped samples. This result may pose as positive signs of the existence of prefurmed pairs in the normal state of high- Tc superconducting materials.

  • PDF

Mixed-state Hall effect of $MgB_2$ thin films ($MgB_2$박막의 혼합상태에서의 홀 효과)

  • Kim, Bo-Yeon;Jung, Soon-Gil;Moon, Kyeong-Hee;Kang, W.N.;Choi, Eun-Mi;Kim, Heon-Jung;Lee, Sung-Ik;Kim, Hyeong-Jin
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.103-108
    • /
    • 2006
  • We have measured the Hall resistivity (${\rho}_{xy}$) and the longitudinal resistivity (${\rho}_{xy}$) on superconducting $MgB_2$ thin films in extended fields up to 18 T. We found a universal scaling behavior between the Hall resistivity and the longitudinal resistivity, which is independent of the temperature and the magnetic field. At a wide magnetic field region from 1 to 18T, a universal power law of ${\beta}=2.0{\pm}0.1$ in a scaling relation, ${\rho}_{xy}={A{\rho}_{xx}}^{\beta}$, was observed in c-axis-oriented $MgB_2$ thin films. These results can be well interpreted by using recent models.

  • PDF