• 제목/요약/키워드: quasi-static responses

검색결과 65건 처리시간 0.022초

Vibrations of a taut horizontal cable subjected to axial support excitations considering nonlinear quasi-static responses

  • Jiang Yi;Yingqi Liu
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.221-235
    • /
    • 2023
  • To calculate the vibrations of a tout cable subjected to axial support excitations, a nonlinear relationship of cable force and the support displacement under static situations are employed to depict the quasi-static vibration of the cable. The dynamic components of quasi-static vibration are inputted as "direct loads" to cause the parametric vibrations on the cable. Both the governing equations of motion and deformation compatibility for parametric vibrations are then derived, which indicates the high coupling of cable parametric force and deformation. Numerical solutions, based on the finite difference method, are put forward for the parametric vibrations, which is validated by the finite element method under periodic axial support excitations. For the quasi-static response, the shorter cables are more sensitive to support excitations than longer ones at small cable force. The quasi-static cable force makes the greatest contribution to the total cable force, but the parametric cable force is responsible for the occurrence of cable loosening at large excitation amplitudes. Moreover, this study also revealed that the traditional approach, assuming a linear relationship between quasi-static cable force and axial support displacement, would result in some great error of the cable parametric responses.

Non-Gaussian approach for equivalent static wind loads from wind tunnel measurements

  • Kassir, Wafaa;Soize, Christian;Heck, Jean-Vivien;De Oliveira, Fabrice
    • Wind and Structures
    • /
    • 제25권6호
    • /
    • pp.589-608
    • /
    • 2017
  • A novel probabilistic approach is presented for estimating the equivalent static wind loads that produce a static response of the structure, which is "equivalent" in a probabilistic sense, to the extreme dynamic responses due to the unsteady pressure random field induced by the wind. This approach has especially been developed for complex structures (such as stadium roofs) for which the unsteady pressure field is measured in a boundary layer wind tunnel with a turbulent incident flow. The proposed method deals with the non-Gaussian nature of the unsteady pressure random field and presents a model that yields a good representation of both the quasi-static part and the dynamical part of the structural responses. The proposed approach is experimentally validated with a relatively simple application and is then applied to a stadium roof structure for which experimental measurements of unsteady pressures have been performed in boundary layer wind tunnel.

The mixed finite element for quasi-static and dynamic analysis of viscoelastic circular beams

  • Kadioglu, Fethi;Akoz, A. Yalcin
    • Structural Engineering and Mechanics
    • /
    • 제15권6호
    • /
    • pp.735-752
    • /
    • 2003
  • The quasi-static and dynamic responses of a linear viscoelastic circular beam on Winkler foundation are studied numerically by using the mixed finite element method in transformed Laplace-Carson space. This element VCR12 has 12 independent variables. The solution is obtained in transformed space and Schapery, Dubner, Durbin and Maximum Degree of Precision (MDOP) transform techniques are employed for numerical inversion. The performance of the method is presented by several quasi-static and dynamic example problems.

Kineto-Elasto Static and Dynamic Responses of a Fully Elastic Linked, Four-bar Mechanism

  • 신중호
    • 한국기계연구소 소보
    • /
    • 통권17호
    • /
    • pp.99-109
    • /
    • 1987
  • Mechanisms with fully elastic members must consider both inertial forces due to the rigid motion of mechanisms and due to the elastic vibration of links. The main objectives of the kineto-elasto static and dynamic analyses are to calculate the quasi-static and the time-domain responses, respectively. An iterative transfer matrix method is used for a four-bar, fully elastic linked mechanism. Houbolt direct integration scheme is incorporated for the inertial effects due to the elastic link vibration. The analytical results are compared with the experimental responses and both responses show in good agreement.

  • PDF

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari;Mojtaba Azhari
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.589-598
    • /
    • 2023
  • This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.

Cyclic behavior of interior beam-column connections in non-seismic RC frames at different loading rates

  • Dhakal, Rajesh P.;Pan, Tso-Chien
    • Structural Engineering and Mechanics
    • /
    • 제23권2호
    • /
    • pp.129-145
    • /
    • 2006
  • This paper provides an insight into the response of non-seismic reinforced concrete (RC) building frames to excitations of different frequencies through experimental investigation. The results of cyclic loading tests of six full-scale RC beam-column sub-assemblies are presented. The tested specimens did not have any transverse reinforcement inside the joint core, and they were subjected to quasi-static and dynamic loading with frequencies as high as 20 Hz. Some important differences between the cyclic responses of non-seismic and ductile RC frames are highlighted. The effect of excitation frequency on the behavior of non-seismic joints is also discussed. In the quasi-static tests, shear deformation of the joint panel accounted for more than 50% of the applied story drift. The test results also showed that higher-frequency excitations are less detrimental than quasi-static cyclic loads, and non-seismic frames can withstand a higher load and a larger deformation when they are applied faster.

An evaluation of iced bridge hanger vibrations through wind tunnel testing and quasi-steady theory

  • Gjelstrup, H.;Georgakis, C.T.;Larsen, A.
    • Wind and Structures
    • /
    • 제15권5호
    • /
    • pp.385-407
    • /
    • 2012
  • Bridge hanger vibrations have been reported under icy conditions. In this paper, the results from a series of static and dynamic wind tunnel tests on a circular cylinder representing a bridge hanger with simulated thin ice accretions are presented. The experiments focus on ice accretions produced for wind perpendicular to the cylinder at velocities below 30 m/s and for temperatures between $-5^{\circ}C$ and $-1^{\circ}C$. Aerodynamic drag, lift and moment coefficients are obtained from the static tests, whilst mean and fluctuating responses are obtained from the dynamic tests. The influence of varying surface roughness is also examined. The static force coefficients are used to predict parameter regions where aerodynamic instability of the iced bridge hanger might be expected to occur, through use of an adapted theoretical 3-DOF quasi-steady galloping instability model, which accounts for sectional axial rotation. A comparison between the 3-DOF model and the instabilities found through two degree-of-freedom (2-DOF) dynamic tests is presented. It is shown that, although there is good agreement between the instabilities found through use of the quasi-steady theory and the dynamic tests, discrepancies exist-indicating the possible inability of quasi-steady theory to fully predict these vibrational instabilities.

Analysis of three dimensional equivalent static wind loads of symmetric high-rise buildings based on wind tunnel tests

  • Liang, Shuguo;Zou, Lianghao;Wang, Dahai;Huang, Guoqing
    • Wind and Structures
    • /
    • 제19권5호
    • /
    • pp.565-583
    • /
    • 2014
  • Using synchronous surface pressures from the wind tunnel test, the three dimensional wind load models of high-rise buildings are established. Furthermore, the internal force responses of symmetric high-rise buildings in along-wind, across-wind and torsional directions are evaluated based on mode acceleration method, which expresses the restoring force as the summation of quasi-static force and inertia force components. Accordingly the calculation methods of equivalent static wind loads, in which the contributions of the higher modes can be considered, of symmetric high-rise buildings in along-wind, across-wind and torsional directions are deduced based on internal forces equivalence. Finally the equivalent static wind loads of an actual symmetric high-rise building are obtained by this method, and compared with the along-wind equivalent static wind loads obtained by China National Standard.

Internal and net roof pressures for a dynamically flexible building with a dominant wall opening

  • Sharma, Rajnish N.
    • Wind and Structures
    • /
    • 제16권1호
    • /
    • pp.93-115
    • /
    • 2013
  • This paper describes a study of the influence of a dynamically flexible building structure on pressures inside and net pressures on the roof of low-rise buildings with a dominant opening. It is shown that dynamic interaction between the flexible roof and the internal pressure results in a coupled system that is similar to a two-degree-of-freedom mechanical system consisting of two mass-spring-damper systems with excitation forces acting on both the masses. Two resonant modes are present, the natural frequencies of which can readily be obtained from the model. As observed with quasi-static building flexibility, the effect of increased dynamic flexibility is to reduce the first natural frequency as well as the corresponding peak value of the admittance, the latter being the result of increased damping effects. Consequently, it is found that the internal and net roof pressure fluctuations (RMS coefficients) are also reduced with dynamic flexibility. This model has been validated from experiments conducted using a cylindrical model with a leeward end flexible diaphragm, whereby good match between predicted and measured natural frequencies, and trends in peak admittances and RMS responses with flexibility, were obtained. Furthermore, since significant differences exist between internal and net roof pressure responses obtained from the dynamic flexibility model and those obtained from the quasi-static flexibility model, it is concluded that the quasi-static flexibility assumption may not be applicable to dynamically flexible buildings. Additionally, since sensitivity analyses reveal that the responses are sensitive to both the opening loss coefficient and the roof damping ratio, careful estimates should therefore be made to these parameters first, if predictions from such models are to have significance to real buildings.

Wave passage effect of seismic ground motions on the response of multiply supported structures

  • Zhang, Y.H.;Lin, J.H.;Williams, F.W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제20권6호
    • /
    • pp.655-672
    • /
    • 2005
  • Seismic random responses due to the wave passage effect are extensively investigated by using the pseudo excitation method (PEM). Two examples are used. The first is very simple but also very informative, while the second is a realistic suspension bridge. Numerical results show that the seismic responses vary significantly with wave speed, especially for low velocity or large span. Such variations are not monotonic, especially for flexible structures. The contributions of the dynamic and quasi-static components depend heavily on the seismic wave velocity and the natural frequencies of structures. For the lower natural frequency cases, the dynamic component has significant effects on the dynamic responses of the structure, whereas the quasi-static component dominates for higher natural frequencies unless the wave speed is also high. It is concluded that if insufficient data on local seismic wave velocity is available, it is advisable to select several possible velocity values in the seismic analysis and to choose the most conservative of the results thus obtained as the basis for design.