• Title/Summary/Keyword: quasi-static bending

Search Result 57, Processing Time 0.025 seconds

Enhancing ductility in carbon fiber reinforced polymer concrete sections: A multi-scale investigation

  • Moab Maidi;Gili Lifshitz Sherzer;Erez Gal
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.385-398
    • /
    • 2024
  • As concrete dominates the construction industry, alternatives to traditionally used steel reinforcement are being sought. This study explored the suitability of carbon fiber-reinforced polymer (CFRP) as a substitute within rigid frames, focusing on its impact on section ductility and overall structural durability against seismic events. However, current design guidelines address quasi-static loads, leaving a gap for dynamic or extreme circumstances. Our approach included multiscale simulations, parametric study, and energy dissipation analyses, drawing upon a unique adaptation of modified compression field theory. In our efforts to optimize macro and microparameters to improve yield strength, manage brittleness, and govern failure modes, we also recognized the potential of CFRP's high corrosion resistance. This characteristic of CFRP could significantly reduce the frequency of required repairs, thereby contributing to enhanced durability of the structures. The research reveals that CFRP's durability and seismic resistance are attributed to plastic joints within compressed fibers. Notably, CFRP can impart ductility to structural designs, effectively balancing its inherent brittleness, particularly when integrated with quasi-brittle materials. This research challenges the notion that designing bendable components with carbon fiber reinforcement is impractical. It shows that creating ductile bending components with CFRP in concrete is feasible despite the material's brittleness. This funding overturns conventional assumptions and opens new avenues for using CFRP in structural applications where ductility and resilience are crucial.

Behavior of Circular Hollow Section R.C Member with Internal Corrugated Steel Tube (파형강관을 삽입한 중공원형단면 철근콘크리트 부재의 거동에 관한 연구)

  • Im, Jung-Soon;Kim, Sung-Chil;Jo, Jae-Byung;Lee, Soo-Keun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.1 s.8
    • /
    • pp.123-131
    • /
    • 2003
  • An experiment was carried out to investigate the mechanical behaviour of the circular hollow section reinforced concrete member with internal corrugated steel tube. A specimen, 50cm in diameter and 340cm in length, was made and tested by 3 points bending. The test load was increased slowly (quasi static) to the failure or unacceptable deformation. During the test, lateral displacement at mid point and longitudinal displacement of extreme fiber on compressive and tensile side of the specimen were measured. The measured data were analysed and compared with calculated results for the equivalent member without inserted corrugated steel tube. The comparison shows that the flexural strength and ductility of hollow section reinforced concrete members can be improved by inserting corrugated steel tubes inside.

An Analytical Study on Moment Response of Welded Steel Pipe for Loading Rate (재학속도에 따른 용접강관의 모멘트 응답특성에 관한 해석적 연구)

  • Chang, Kyong-Ho;Jang, Gab-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.37-47
    • /
    • 2011
  • This article aims to analytically research for influence of residual stresses on bending moment responses against welded steel pipes subjected to quasi -static or dynamic loadings. The residual stresses of the welded steel pipe are computed by three-dimensional welding simulation. The bending moment responses of the welded and seamless steel pipes are determined by using three-dimensional dynamic elastoplastic FE analysis as a function of loading rate. It is seen from analytical results that the welded steel pipe shows lower moment response comparing to the seamless steel pipe, and moment difference between seamless and welded steel pipes tends to decrease as loading rate increases.

Experimental and numerical investigation of the seismic performance of railway piers with increasing longitudinal steel in plastic hinge area

  • Lu, Jinhua;Chen, Xingchong;Ding, Mingbo;Zhang, Xiyin;Liu, Zhengnan;Yuan, Hao
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.545-556
    • /
    • 2019
  • Bridge piers with bending failure mode are seriously damaged only in the area of plastic hinge length in earthquakes. For this situation, a modified method for the layout of longitudinal reinforcement is presented, i.e., the number of longitudinal reinforcement is increased in the area of plastic hinge length at the bottom of piers. The quasi-static test of three scaled model piers is carried out to investigate the local longitudinal reinforcement at the bottom of the pier on the seismic performance of the pier. One of the piers is modified by increased longitudinal reinforcement at the bottom of the pier and the other two are comparative piers. The results show that the pier failure with increased longitudinal bars at the bottom is mainly concentrated at the bottom of the pier, and the vulnerable position does not transfer. The hysteretic loop curve of the pier is fuller. The bearing capacity and energy dissipation capacity is obviously improved. The bond-slip displacement between steel bar and concrete decreases slightly. The finite element simulations have been carried out by using ANSYS, and the results indicate that the seismic performance of piers with only increasing the number of steel bars (less than65%) in the plastic hinge zone can be basically equivalent to that of piers that the number of steel bars in all sections is the same as that in plastic hinge zone.

Bending analysis of functionally graded thick plates with in-plane stiffness variation

  • Mazari, Ali;Attia, Amina;Sekkal, Mohamed;Kaci, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.409-421
    • /
    • 2018
  • In the present paper, functionally graded (FG) materials are presented to investigate the bending analysis of simply supported plates. It is assumed that the material properties of the plate vary through their length according to the power-law form. The displacement field of the present model is selected based on quasi-3D hyperbolic shear deformation theory. By splitting the deflection into bending, shear and stretching parts, the number of unknowns and equations of motion of the present formulation is reduced and hence makes them simple to use. Governing equations are derived from the principle of virtual displacements. Numerical results for deflections and stresses of powerly graded plates under simply supported boundary conditions are presented. The accuracy of the present formulation is demonstrated by comparing the computed results with those available in the literature. As conclusion, this theory is as accurate as other shear deformation theories and so it becomes more attractive due to smaller number of unknowns. Some numerical results are provided to examine the effects of the material gradation, shear deformation on the static behavior of FG plates with variation of material stiffness through their length.

Numerical Tests of Large Mass Method for Stress Calculation of Euler-Bernoulli Beams Subjected to Support Accelerations (지지점 가속도에 의해 가진되는 보의 응력계산에 대한 거대질량법의 정확도)

  • Kim, Yong-Woo;Choi, Nam Seok;Jhung, Myung Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.188-193
    • /
    • 2013
  • The large mass method for dynamic analysis of statically determinate beams subjected to in-phase support motions is justified by showing that the equation of motion of the beams under consideration is equivalent to that of large mass model of the beam when an appropriate large mass ratio is employed. The accuracy of the stress responses based on the beam large mass method is investigated through careful numerical tests. The numerical results are compared to analytic solutions and the comparison shows that the large mass method yields not only the time history of motion but also the distributions of bending moment and shear force accurately.

  • PDF

Damage Estimation for Offshore Tubular Members Under Quasi-Static Loading (준정적하중(準靜的荷重)을 받는 해양구조물(海洋構造物)의 원통부재(圓筒部材)에 대한 손상예측(損傷豫測))

  • Paik, Jeom-K.;Shin, Byung-C.;Kim, Chang-Y.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.81-93
    • /
    • 1989
  • The present study attempts to develop the theoretical model for the damage estimation of offshore tubular members which are subjected to the accidental impact loads due to collision, falling objects and so on. For the reasons of the simplicity of the problem being considered, however, this paper postulates that the accidental load can be approximated to be the quasi-static one, in which dynamic effects are negelcted. Based upon the theoretical and experimental results which are obtained from the present study as well as the existing literature, the load-displacement relations taking the interaction effect between the local denting and the global bending deformation into account are presented in the explicit form when the concentrated lateral load acts on the tubular member whose end condition is supposed to be rotation ally free and axially restrained, in which membrane forces develop. Thus, the practical estimation of damage deformation for the local denting and the global bending damage of tubular members against the accidental loads is possible and also the collision absorption capability of the member can be calculated by performing the integration of the area below the given load-displacement curves, provided that all the energy is dissipated to the deforming the member itself.

  • PDF

Combined influence of porosity and elastic foundation parameters on the bending behavior of advanced sandwich structures

  • Malek Hadji;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Abdelmoumen Anis Bousahla;Fouad Bourada;Mohamed Bourada;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Elastic bending of imperfect functionally graded sandwich plates (FGSPs) laying on the Winkler-Pasternak foundation and subjected to sinusoidal loads is analyzed. The analyses have been established using the quasi-3D sinusoidal shear deformation model. In this theory, the number of unknowns is condensed to only five unknowns using integral-undefined terms without requiring any correction shear factor. Moreover, the current constituent material properties of the middle layer is considered homogeneous and isotropic. But those of the top and bottom face sheets of the graded porous sandwich plate (FGSP) are supposed to vary regularly and continuously in the direction of thickness according to the trigonometric volume fraction's model. The corresponding equilibrium equations of FGSPs with simply supported edges are derived via the static version of the Hamilton's principle. The differential equations of the system are resolved via Navier's method for various schemes of FGSPs. The current study examine the impact of the material index, porosity, side-to-thickness ratio, aspect ratio, and the Winkler-Pasternak foundation on the displacements, axial and shear stresses of the sandwich structure.

An Analysis of Dent Formation by Dynamic Finite Element Method (동적 유한요소해석을 이용한 Dent 발생에 대한 연구)

  • Cha, Sung-Hoon;Shin, Myoung-Soo;Kim, Jong-Bong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • For the improvement of fuel consumption, the study on the use of lightweight material or thinner sheet have been carried out in automotive industry. With the need for the use of thinner sheet, the dent resistance became one of the major concern in th design of exterior panels in automotive industry. Many studies have been carried out for the dent resistance by experiment or quasi-static numerical simulation. In this study, the dent formation behavior is investigated by dynamic finite element analysis using ABAQUS. Dent formation may be affected by many factors such as sheet thickness, material properties, pre-strain, and sheet curvature. The effect of these factors on dent resistance is investigated. From the analysis following three conclusions are derived. First, dent resistance become hard as the sheet curvature radius increases. Second, dynamic dent resistance is mainly affected by bending stress rather than tensile stress. Third, the pre-strain itself do not give any guidance for dynamic dent resistance and dynamic dent resistance have to be decided considering the strain hardening and thickness reduction together. The results are considered to be reliable and useful to improve the dent damage of automotive panels.

An Experimental Study on the Fracture Behavior of Nuclear Piping System with a Circumferential Crack(I) - Estimation of Crack Behavior in Straight Piping - (원주방향균열이 존재하는 원전 배관계통의 파괴거동에 관한 실험적 연구(I) - 직관부에서의 균열거동 평가 -)

  • Choi, Young-Hwan;Park, Youn-Won;Wilkowski, Gery
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1182-1195
    • /
    • 1999
  • The purpose of this study is to investigate experimentally the effects of both seismic loading and crack length on the fracture behavior of piping system with a circumferential crack in nuclear power plants. The experiments were performed using both large scale piping system facility and 4 points bending test machine under PWR operating conditions. The difference in the load carrying capacities between cracked piping and non-cracked piping was also investigated using the results from experiments and numerical calculations. The results obtained from the experiments and estimation are as follows : (1) The safety margin under seismic loading is larger than those under quasi static loading or simple cyclic loading. (2) There was no significant effect of crack length on tincture behavior of piping system with both a surface crack and a through-wall crack. (3) The load carrying capacity in cracked piping was reduced by factors of 7 to 46 compared to non-cracked piping.