• 제목/요약/키워드: quasi-static bending

검색결과 55건 처리시간 0.023초

탄소섬유/에폭시 면재, 알루미늄 허니컴 코어 샌드위치 복합재 구조의 압입 손상에 의한 잔류강도 연구 (A Study on Residual Strength of Carbon/Epoxy Face Sheet and Honeycomb Core Sandwich Composite Structure after Quasi Static Indentation Damage)

  • 공창덕;박현범;이승현
    • Composites Research
    • /
    • 제22권2호
    • /
    • pp.24-29
    • /
    • 2009
  • 본 연구에서는 알루미늄 허니컴 코어와 카본 면재가 적용된 샌드위치 복합재 구조에 대해 준정적 압입 손상 이후의 잔류 강도 평가에 대한 연구를 수행하였다. 3점 굽힘 시험과 압축 시험을 통해 시편의 강도를 확인하고 시편에 손상을 모사하기 위하여 준정적 압입 손상을 가하였다. 손상된 시편을 손상 전 시편과 동일한 시험을 통해 손상 전의 강도와 비교하였다. 압입 손상 이후 압축 강도와 굽힘 강도는 압입 깊이의 증가에 따라 강도가 감소하였고 손상 단계에 따른 잔류 강도 정도를 확인하였다.

Experimental and numerical study on energy absorption of lattice-core sandwich beam

  • Taghipoor, Hossein;Noori, Mohammad Damghani
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.135-147
    • /
    • 2018
  • Quasi-static three-point bending tests on sandwich beams with expanded metal sheets as core were conducted. Relationships between the force and displacement at the mid-span of the sandwich beams were obtained from the experiments. Numerical simulations were carried out using ABAQUS/EXPLCIT and the results were thoroughly compared with the experimental results. A parametric analysis was performed using a Box-Behnken design (BBD) for the design of experiments (DOE) techniques and a finite element modeling. Then, the influence of the core layers number, size of the cell and, thickness of the substrates was investigated. The results showed that the increase in the size of the expanded metal cell in a reasonable range was required to improve the performance of the structure under bending collapse. It was found that core layers number and size of the cell was key factors governing the quasi-static response of the sandwich beams with lattice cores.

샌드위치 복합재 구조의 손상에 의한 잔류 강도 연구 (A Study on Residual Strength of Damaged Sandwich Composite Structure)

  • 공창덕;박현범;김상훈;송민수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2073-2079
    • /
    • 2008
  • This study aims to investigate the residual strength of sandwich composites with Al honeycomb core and carbon fiber face sheets after the quasi-static indentation damage by the experimental investigation. The 3-point bending test and the edge-wise compressive strength test were used to find the mechanical properties. The quasi-static point load and damaged hole was applied to introduce the simulated damage on the Each damaged specimens were finally assessed by the 3-point bending test and the compressive strength test. The investigation results revealed the residual strength of the damaged specimens due to the quasi-static indentation.

  • PDF

Impact of porosity distribution on static behavior of functionally graded plates using a simple quasi-3D HSDT

  • Farouk Yahia Addou;Fouad Bourada;Mustapha Meradjah;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Ali Alnujaie
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.87-97
    • /
    • 2023
  • The bending of a porous FG plate is discussed in this study using a novel higher quasi-3D hyperbolic shear deformation theory with four unknowns. The proposed theory takes into consideration the normal and transverse shear deformation effect and ensures the parabolic distribution of the transverse stresses through the thickness direction with zero-traction at the top and the bottom surfaces of the structure. Innovative porous functionally graded materials (FGM) have through-thickness porosity as a unique attribute that gradually varies with their qualities. An analytical solution of the static response of the perfect and imperfect FG plate was derived based on the virtual work principle and solved using Navier's procedure. The validity and the efficiency of the current model is confirmed by comparing the results with those obtained by others solutions. The comparisons showed that the present model is very efficient and simple in terms of computation time and exactness. The impact of the porosity parameter, aspect ratio, and thickness ratio on the bending of porous FG plate is shown through a discussion of several numerical results.

Bending behaviour of FGM plates via a simple quasi-3D and 2D shear deformation theories

  • Youcef, Ali;Bourada, Mohamed;Draiche, Kada;Boucham, Belhadj;Bourada, Fouad;Addou, Farouk Yahia
    • Coupled systems mechanics
    • /
    • 제9권3호
    • /
    • pp.237-264
    • /
    • 2020
  • This article investigates the static behaviour of functionally graded (FG) plates sometimes declared as advanced composite plates by using a simple and accurate quasi-3D and 2D hyperbolic higher-order shear deformation theories. The properties of functionally graded materials (FGMs) are assumed to vary continuously through the thickness direction according to exponential law distribution (E-FGM). The kinematics of the present theories is modeled with an undetermined integral component and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate; therefore, it does not require the shear correction factor. The fundamental governing differential equations and boundary conditions of exponentially graded plates are derived by employing the static version of principle of virtual work. Analytical solutions for bending of EG plates subjected to sinusoidal distributed load are obtained for simply supported boundary conditions using Navier'is solution procedure developed in the double Fourier trigonometric series. The results for the displacements and stresses of geometrically different EG plates are presented and compared with 3D exact solution and with other quasi-3D and 2D higher-order shear deformation theories to verify the accuracy of the present theory.

CFRP적층재의 잔류피로굽힘강도애 미치는 열습의 영향 (Influence of Hygrothermals on Residual Fatigue Bending Strength of CFRP Composite Laminates)

  • 박노식;임광희;양인영
    • 한국안전학회지
    • /
    • 제12권2호
    • /
    • pp.27-36
    • /
    • 1997
  • This paper evaluates the static and fatigue bending strengths of CFRP (carbon fiber reinforced plastic) laminates subjected to hygrothermals. The specimens which had different stacking composition, orthotropic and quasi-isotropic laminated plates, were prepared for this experiment. A steel ball launched by the air gun collides against CFRP laminates to generate impact damages, and the 3-point fatigue bending test is carried out by using the impacted laminates to investigate the influence of hygrothermals on the effect on the residual bending fatigue strength of CFRP laminates.

  • PDF

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari;Mojtaba Azhari
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.589-598
    • /
    • 2023
  • This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.

Finite element formulation and analysis of Timoshenko beam excited by transversely fluctuating supports due to a real seismic wave

  • Kim, Yong-Woo;Cha, Seung Chan
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.971-980
    • /
    • 2018
  • Using the concept of quasi-static decomposition and using three-noded isoparametric locking-free element, this article presents a formulation of the finite element method for Timoshenko beam subjected to spatially different time-dependent motions at supports. To verify the validity of the formulation, three fixed-hinged beams excited by the real seismic motions are examined; one is a slender beam, another is a stocky one, and the other is an intermediate one. The numerical results of time histories of motions of the three beams are compared with corresponding analytical solutions. The internal loads such as bending moment and shearing force at a specific time are also compared with analytic solutions. These comparisons show good agreements. The comparisons between static components of the internal loads and the corresponding total internal loads show that the static components predominate in the stocky beam, whereas the dynamic components predominate in the slender one. Thus, the total internal loads of the stocky beam, which is governed by static components, can be predicted simply by static analysis. Careful numerical experiments indicate that the fundamental frequency of a beam can be used as a parameter identifying such a stocky beam.

Analysis of dry friction hysteresis in a cable under uniform bending

  • Huang, Xiaolun;Vinogradov, Oleg
    • Structural Engineering and Mechanics
    • /
    • 제2권1호
    • /
    • pp.63-80
    • /
    • 1994
  • A cable is considered as a system of helical wires and a core with distributed dry friction forces at their interfaces. Deformations of the cable subjected to a uniform bending are analyzed. It is shown that there is a critical bending curvature when a slip at the wire-core interface occurs. It originates at the neutral axis of the cross section of the cable and then spreads symmetrically over the cross section with the increase of bending. The effect of slippage on the cable stiffness is investigated. This model is also used to analyze a cable under the quasi-static cyclic bending. Explicit expression for the hysteretic losses per cycle of bending is derived. Numerical examples are given to show the influence of dry friction and helix angle on the bending stiffness and hysteretic losses in the cable.

Seismic performance of prefabricated reinforced concrete column-steel beam sub-assemblages

  • Bai, Juju;Li, Shengcai
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.203-218
    • /
    • 2022
  • In this paper, quasi-static tests were carried out on three prefabricated reinforced concrete column-steel beam (RCS) sub-assemblages with floor slabs and one comparison specimen without floor slab. The effects of axial compression and floor slab on the seismic performance were studied, and finite element simulations were conducted using ABAQUS. The results showed that the failure of prefabricated RCS sub-assemblages with floor occurred as a joint beam and column failure mode, while failure of sub-assemblages without floor occurred due to beam plastic hinge formation. Compared to the prefabricated RCS sub-assemblages without floor slab, the overall stiffness of the sub-assemblages with floor slab was between 19.2% and 45.4% higher, and the maximum load bearing capacity increased by 26.8%. However, the equivalent viscosity coefficient was essentially unchanged. When the axial compression ratio increased from 0.24 to 0.36, the hysteretic loops of the sub-assemblages with floor became fuller, and the load bearing capacity, ductility, and energy dissipation capacity increased by 12.1%, 12.9% and 8.9%, respectively. Also, the initial stiffness increased by 10.2%, but the stiffness degradation accelerated. The proportion of column drift caused by beam end plastic bending and column end bending changed from 35% and 46% to 47% and 36%, respectively. Comparative finite element analyses indicated that the numerical simulation outcomes agreed well with the experimental results.