• Title/Summary/Keyword: quasi-overconsolidation

Search Result 3, Processing Time 0.058 seconds

Evaluation of long term shaft resistance of the reused driven pile in clay

  • Cui, Jifei;Rao, Pingping;Wu, Jian;Yang, Zhenkun
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • Reusing the used pile has not yet been implemented due to the unpredictability of the bearing capacity evolution. This paper presents an analytic approach to estimate the sides shear setup after the dissipation of pore pressure. Long-term evolution of adjacent soil is simulated by viscoelastic-plastic constitutive model. Then, an innovative concept of quasi-overconsolidation is proposed to estimate the strength changes of surrounding soil. Total stress method (α method) is employed to evaluate the long term bearing capacity. Measured data of test piles in Louisiana and semi-logarithmic time function are cited to validate the effectiveness of the presented method. Comparisons illustrate that the presented approach gives a reasonably prediction of the side shear setup. Both the presented method and experiment show the shaft resistance increase by 30%-50%, and this highlight the potential benefit of piles reutilization.

Effects of Various Loading Periods on the Consolidation Characteristics of Remolded Clay - With Special Reference to Gwangyang Marine Clayey Soil - (하중재하기간이 재성형 점토의 압밀특성에 미치는 영향 - 광양항 해성점토를 중심으로 -)

  • Hong, Jae-Cheol;Kim, Jin-Young;Shim, Jae-Rok;Kang, Kwon-Soo;Kim, Ju-Hyun;Baek, Won-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.53-64
    • /
    • 2014
  • This study sets it's face to define effects of the various loading periods in normal consolidation area on clay's compression and long-term consolidation characteristics through a laboratory test using homogeneous remolded clay. Moreover, by carrying out a long-term consolidation test which diversifies initial consolidation applicable to effective overburden loading in the various loading period. This study intended to suggest the method predicting the final settlement on the basis of loading periods by comparing and analyzing compression curve's characteristics according to loading weight of each stage and increase in loading period when carrying out the standard consolidation test. From the test results, the study shows that as of the soft clay's compression characteristics on the basis of various loading periods, preconsolidation load has a tendency to be decreased slightly as the loading period is getting more and more longer at each step after initial consolidation load puts on the remolded clay which is caused by secondary consolidation's increase in the latter part of each phase. And those effects have an weaker influence on compression index in normal consolidation area at the same time as secondary consolidation brought out quasi-overconsolidation and stabilization of clay's structure, have an influence re-compression index is increased in overconsolidation area on the other hand.

Mechanical Properties of Lean-mixed Cement-treated Soil for Effective Reuse of Dredged Clay (준설점토의 친환경 재활용을 위한 시멘트계 처리토의 장단기 역학거동)

  • Kwon, Youngcheul;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.71-78
    • /
    • 2011
  • Cement treating technique, such as deep mixing method, has been used widely to stabilize the dredged clayey soil for many years. Despite of its effectiveness in treating soil by cement, several efforts have also been made to try to reduce the side effect of the cement that used to stabilize the dredged clay. However, authors considered that more detailed study on the physical and mechanical properties of lean-mixed soil-cement has been required to establish the design procedure to apply the practical problems. Therefore, in this study, the curing time and mixing ratio was used as key parameters to estimate the physical and mechanical properties including long-term behavior. The unconfined strength of lean-mixed soil-cement increase continuously during curing period, 270 days, while increasing rate becomes low in ordinary cement-treated dredged clay. We also concluded that cement-treated dredging clay shows apparent quasi overconsolidation behavior even in low cement proportion. By this study, fundamental approach was carried out for effective reuse of very soft dredged clayey soil both in mechanical and environmental aspect. It can be also expected that this study can propose a basic design data to use the lean-mixed soil cement.