• Title/Summary/Keyword: quasi-linear model

Search Result 116, Processing Time 0.035 seconds

The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate

  • Boulefrakh, Laid;Hebali, Habib;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.161-178
    • /
    • 2019
  • In this research, a simple quasi 3D hyperbolic shear deformation model is employed for bending and dynamic behavior of functionally graded (FG) plates resting on visco-Pasternak foundations. The important feature of this theory is that, it includes the thickness stretching effect with considering only 4 unknowns, which less than what is used in the First Order Shear Deformation (FSDT) theory. The visco­Pasternak's foundation is taken into account by adding the influence of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The equations of motion for thick FG plates are obtained in the Hamilton principle. Analytical solutions for the bending and dynamic analysis are determined for simply supported plates resting on visco-Pasternak foundations. Some numerical results are presented to indicate the effects of material index, elastic foundation type, and damping coefficient of the foundation, on the bending and dynamic behavior of rectangular FG plates.

A Methodology for Improving fitness of the Latent Growth Modeling using Association Rule Mining (연관규칙을 이용한 잠재성장모형의 개선방법론)

  • Cho, Yeong Bin;Jun, Jae-Hoon;Choi, Byungwoo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.217-225
    • /
    • 2019
  • The Latent Growth Modeling(LGM) is known as the typical analysis method of longitudinal data and it could be classified into unconditional model and conditional model. It is common to assume that the growth trajectory of unconditional model of LGM is linear. In the case of quasi-linear, the methodology for improving the model fitness using Sequential Pattern of Association Rule Mining is suggested. To do this, we divide longitudinal data into quintiles and extract periodic changes of the longitudinal data in each quintiles and make sequential pattern based on this periodic changes. To evaluate the effectiveness, the LGM module in SPSS AMOS was used and the dataset of the Youth Panel from 2001 to 2006 of Korea Employment Information Service. Our methodology was able to increase the fitness of the model compared to the simple linear growth trajectory.

Development of a nonlinear biomechanical soft tissue model for a virtual surgery trainer (가상수술기를 위한 비선형 생체 모델의 개발)

  • Kim J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.911-914
    • /
    • 2005
  • Soft tissue characterization and modeling based on living tissues has been investigated in order to provide a more realistic behavior in a virtual reality based surgical simulation. In this paper, we characterize the nonlinear viscoelastic properties of intra-abdominal organs using the data from in vivo animal experiments and inverse FE parameter estimation algorithm. In the assumptions of quasi-linear-viscoelastic theory, we estimated the nonlinear material parameters to provide a physically based simulation of tissue deformations. To calibrate the parameters to the experimental results, we developed a three dimensional FE model to simulate the forces at the indenter and an optimization program that updates new parameters and runs the simulation iteratively. The comparison between simulation and experimental behavior of pig intra abdominal soft tissue are presented to provide a validness of the tissue model using our approach.

  • PDF

Time domain flutter analysis of the Great Belt East Bridge

  • Briseghella, Lamberto;Franchetti, Paolo;Secchi, Stefano
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.479-492
    • /
    • 2002
  • A finite element aerodynamic model that can be used to analyse flutter instability of long span bridges in the time domain is presented. This approach adopts a simplified quasi-steady formulation of the wind forces neglecting the vortex shedding effects. The governing equations used are effective only for reduced velocities $V^*$ sufficiently great: this is generally acceptable for long-span suspension bridges and, then, the dependence of the wind forces expressions of the flutter derivatives can be neglected. The procedure describes the mechanical response in an accurate way, taking into account the non-linear geometry effects (large displacements and large strains) and considering also the compressed locked coil strands instability. The time-dependence of the inertia force due to fluid structure interaction is not considered. The numerical examples are performed on the three-dimensional finite element model of the Great Belt East Bridge (DK). A mode frequency analysis is carried out to validate the model and the results show good agreement with the experimental measurements of the full bridge aeroelastic model in the wind tunnel tests. Significant parameters affecting bridge response are introduced and accurately investigated.

Fluid viscous device modelling by fractional derivatives

  • Gusella, V.;Terenzi, G.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.177-191
    • /
    • 1997
  • In the paper, a fractional derivative Kelvin-Voigt model describing the dynamic behavior of a special class of fluid viscous dampers, is presented. First of all, in order to verify their mechanical properties, two devices were tested the former behaving as a pure damper (PD device), whereas the latter as an elastic-damping device (ED device). For both, quasi-static and dynamic tests were carried out under imposed displacement control. Secondarily, in order to describe their cyclical behavior, a model composed by an elastic and a damping element connected in parallel was defined. The elastic force was assumed as a linear function of the displacement whereas the damping one was expressed by a fractional derivative of the displacement. By setting an appropriate numerical algorithm, the model parameters (fractional derivative order, damping coefficient and elastic stiffness) were identified by experimental results. The estimated values allowed to outline the main parameter properties on which depend both the elastic as well as the damping behavior of the considered devices.

Nonlinear FEA of higher order beam resting on a tensionless foundation with friction

  • He, Guanghui;Li, Xiaowei;Lou, Rong
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.95-116
    • /
    • 2016
  • A novel higher order shear-deformable beam model, which provides linear variation of transversal normal strain and quadratic variation of shearing strain, is proposed to describe the beam resting on foundation. Then, the traditional two-parameter Pasternak foundation model is modified to capture the effects of the axial deformation of beam. The Masing's friction law is incorporated to deal with nonlinear interaction between the foundation and the beam bottom, and the nonlinear properties of the beam material are also considered. To solve the mathematical problem, a displacement-based finite element is formulated, and the reliability of the proposed model is verified. Finally, numerical examples are presented to study the effects of the interfacial friction between the beam and foundation, and the mechanical behavior due to the tensionless characteristics of the foundation is also examined. Numerical results indicate that the effects of tensionless characteristics of foundation and the interfacial friction have significant influences on the mechanical behavior of the beam-foundation system.

Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads

  • Ismail M. Mudhaffar;Abdelbaki Chikh;Abdelouahed Tounsi;Mohammed A. Al-Osta;Mesfer M. Al-Zahrani;Salah U. Al-Dulaijan
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.167-180
    • /
    • 2023
  • This work applies a four-known quasi-3D shear deformation theory to investigate the bending behavior of a functionally graded plate resting on a viscoelastic foundation and subjected to hygro-thermo-mechanical loading. The theory utilizes a hyperbolic shape function to predict the transverse shear stress, and the transverse stretching effect of the plate is considered. The principle of virtual displacement is applied to obtain the governing differential equations, and the Navier method, which comprises an exponential term, is used to obtain the solution. Novel to the current study, the impact of the viscoelastic foundation model, which includes a time-dependent viscosity parameter in addition to Winkler's and Pasternak parameters, is carefully investigated. Numerical examples are presented to validate the theory. A parametric study is conducted to study the effect of the damping coefficient, the linear and nonlinear loadings, the power-law index, and the plate width-tothickness ratio on the plate bending response. The results show that the presence of the viscoelastic foundation causes an 18% decrease in the plate deflection and about a 10% increase in transverse shear stresses under both linear and nonlinear loading conditions. Additionally, nonlinear loading causes a one-and-a-half times increase in horizontal stresses and a nearly two-times increase in normal transverse stresses compared to linear loading. Based on the article's findings, it can be concluded that the viscosity effect plays a significant role in the bending response of plates in hygrothermal environments. Hence it shall be considered in the design.

Theoretical-Numerical Modeling of High-Frequency Combustion Instabilities with Linear Waves (선형 고주파 연소불안정의 이론-수치적 예측)

  • Lee, G.Y.;Yoon, W.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.125-135
    • /
    • 2001
  • Aiming at a direct, also more realistic, prediction of unstable waves evolving in the combustion chamber, present paper introduces a new analytical method. Instability equations are freshly formulated, and solve the time-integrated ODEs for amplification factors to find the transients of pressure and velocity fluctuations. Present numerical approach requires no separate treatments for nonlinearities. Preliminary numerical experiments for unstable waves in quasi-one-dimensional rocket combustor, show validity and applicability of present model, and promise for its practical use. Study for the complex models for physics, especially velocity- and pressure-coupled responses, and inclusion of multi dimensionality remains as future tasks.

  • PDF

A Double Auction Model based on Nonlinear Utility Functions : Genetic Algorithms Approach for Market Optimization (비선형 효용함수 기반의 다중경매 모형 : 시장 최적화를 위한 유전자 알고리즘 접근법)

  • Choi, Jin-Ho;Ahn, Hyun-Chul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.1
    • /
    • pp.19-33
    • /
    • 2008
  • In the previous double auction research for the market optimization, two basic assumptions are usually applied - (1) each trader has a linear or quasi-linear utility function of price and quantity, and (2) buyers as well as sellers have identical utility functions. However, in practice, each buyer and seller in a double auction market may have diverse utility functions for trading goods. Therefore, a flexible and integrated double auction mechanism that can integrate all traders' diverse utility functions is necessary. In particular, the flexible mechanism is more useful in a synchronous double auction because traders can properly change utilities in each round. Therefore, in this paper, we propose a flexible synchronous double auction mechanism in which traders can express diverse utility functions for the price and quantity of the goods, and optimal total market utility is guaranteed. In order to optimize the total market utility which consists of multiple complex utility functions of traders. We show the viability of the proposed mechanism through a several simulation experiments.

A Double Auction Model based on Nonlinear Utility Functions;Genetic Algorithms Approach for Market Optimization

  • Choe, Jin-Ho;An, Hyeon-Cheol
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.592-601
    • /
    • 2007
  • In the conventional double auction approaches, two basic assumptions are usually applied - (1) each trader has a linear or quasi-linear utility function of price and quantity, (2) buyers as well as sellers have identical utility functions. However, in practice, these assumptions are unrealisitc. Therefore, a flexible and integrated double auction mechanism that can integrate all traders' diverse utility functions is necessary. We propose a double auction mechanism with resource allocation based on nonlinear utility functions, namely a flexible synchronous double auction system where each participant can express a diverse utility function on the price and quantity. In order to optimize the total market utility consists of multiple complex utility functions of traders, our study proposes a genetic algorithm (GA) We show the viability of the proposed mechanism through several simulation experiments.

  • PDF