• Title/Summary/Keyword: quantum group

Search Result 178, Processing Time 0.023 seconds

Conformational Analyses for Hydrated Oligopeptides by Quantum Chemical Calculation (양자화학적 계산에 의한 올리고펩티드 수화물의 구조분석)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.95-104
    • /
    • 2018
  • The structures and energies of the anhydrate and hydrate (hydrate rate: h of 1) states of L-alanine (LA) and glycine (G) were calculated by quantum chemical calculations (QCCs) using B3LYP/6-31G(d,p) for four types of conformers (${\beta}$-extended: ${\Phi}/{\Psi}=t-/t+$, $PP_{II}$: g-/t+, $PP_{II}$-like: g-/g+, and ${\alpha}$-helix: g-/g-). In LA and G, which have an imino proton (NH), three conformation types of ${\beta}$-extended, $PP_{II}$-like, and ${\alpha}$-helix were obtained, and water molecules were inserted mainly between the intra-molecular hydrogen bond of $CO{\cdots}HN$ in $PP_{II}$-like and ${\alpha}$-helix, and attached to the CO group in ${\beta}$-extended. In LA and G, $PP_{II}$-like conformers were most stable in the anhydrate and hydrate states, and the result for LA was different from some experimental and theoretical results from other studies reporting that the main stable conformation of alanine oligopeptide was $PP_{II}$. The formation pattern and stability of the conformation of the oligopeptide was strongly dominated by the presence/absence of intra-molecular hydrogen bonding of $CO{\cdots}HN$, or the presence/absence of an $NH_2$ group in the starting amino acid.

Conclusions and Suggestions on Low-Dose and Low-Dose Rate Radiation Risk Estimation Methodology

  • Sakai, Kazuo;Yamada, Yutaka;Yoshida, Kazuo;Yoshinaga, Shinji;Sato, Kaoru;Ogata, Hiromitsu;Iwasaki, Toshiyasu;Kudo, Shin'ichi;Asada, Yasuki;Kawaguchi, Isao;Haeno, Hiroshi;Sasaki, Michiya
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.14-23
    • /
    • 2021
  • Background: For radiological protection and control, the International Commission on Radiological Protection (ICRP) provides the nominal risk coefficients related to radiation exposure, which can be extrapolated using the excess relative risk and excess absolute risk obtained from the Life Span Study of atomic bomb survivors in Hiroshima and Nagasaki with the dose and dose-rate effectiveness factor (DDREF). Materials and Methods: Since it is impossible to directly estimate the radiation risk at doses less than approximately 100 mSv only from epidemiological knowledge and data, support from radiation biology is absolutely imperative, and thus, several national and international bodies have advocated the importance of bridging knowledge between biology and epidemiology. Because of the accident at the Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station in 2011, the exposure of the public to radiation has become a major concern and it was considered that the estimation of radiation risk should be more realistic to cope with the prevailing radiation exposure situation. Results and Discussion: To discuss the issues from wide aspects related to radiological protection, and to realize bridging knowledge between biology and epidemiology, we have established a research group to develop low-dose and low-dose-rate radiation risk estimation methodology, with the permission of the Japan Health Physics Society. Conclusion: The aim of the research group was to clarify the current situation and issues related to the risk estimation of low-dose and low-dose-rate radiation exposure from the viewpoints of different research fields, such as epidemiology, biology, modeling, and dosimetry, to identify a future strategy and roadmap to elucidate a more realistic estimation of risk against low-dose and low-dose-rate radiation exposure.

Physicochemical and Antioxidant Properties of Sponge Cake made using Barley Sprout and Green Tea (새싹보리와 녹차 스펀지케이크의 이화학적 및 항산화적 품질 특성)

  • Kim, Eunkyung
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.1
    • /
    • pp.90-98
    • /
    • 2022
  • This study investigated the physicochemical and antioxidant properties of sponge cakes made using different amounts (2 and 4%) of barley sprout powder (BSP) and green tea powder (GTP), respectively. The results showed that the baking loss rate of GS2 (2% green tea) and GS4 (4% green tea) was 12.39% and 11.96%, respectively in the green tea addition group, which was higher than that of the barley sprout group, but significantly lower than that of the control group at 13.34% (p<0.05). The specific volumes of the sponge cake containing barley sprout and green tea 2% and 4% were between 2.84-2.95 mL/g, which was significantly higher compared to the control group at 2.69 mL/g (p<0.05). The sugar content was significantly higher in the control group and the barley sprout addition group at 2.30°Brix (p<0.05). As for the volume index, the control group with the lowest value at 13.43 showed a significant difference compared to the addition groups. The volume index significantly decreased as the addition amount increased, measuring 14.07 in BS4 (4% BSP) compared to 14.87 of BS2 (2% BSP) in the barley sprout group (p<0.05). In cross-sectional photography, the color became darker than that of the control group as the quantum of additives increased. In terms of the DPPH and ABTS radical scavenging activity, the total phenol content, and total flavonoid content, the groups with the addition of barley sprout and green tea showed higher antioxidant activity than the control group (p<0.05).

Comparison of Electrical Properties of β-Gallium Oxide (β-Ga2O3) Power SBDs with Guard Ring Structures (Guard Ring 구조에 따른 β-산화갈륨(β-Ga2O3) 전력 SBDs의 전기적 특성 비교)

  • Hoon-Ki Lee;Kyujun Cho;Woojin Chang;Jae-Kyoung Mun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.208-214
    • /
    • 2024
  • This reports the electrical properties of single-crystal β-gallium oxide (β-Ga2O3) vertical Schottky barrier diodes (SBDs) with a different guard ring structure. The vertical Schottky barrier diodes (V-SBDs) were fabricated with two types guard ring structures, one is with metal deposited on the Al2O3 passivation layer (film guard ring: FGR) and the other is with vias formed in the Al2O3 passivation layer to allow the metal to contact the Ga2O3 surface (metal guard ring: MGR). The forward current values of FGR and MGR V-SBD are 955 mA and 666 mA at 9 V, respectively, and the specific on-resistance (Ron,sp) is 5.9 mΩ·cm2 and 29 mΩ·cm2. The series resistance (Rs) in the nonlinear section extracted using Cheung's formula was 6 Ω, 4.8 Ω for FGR V-SBD, 10.7 Ω, 6.7 Ω for MGR V-SBD, respectively, and the breakdown voltage was 528 V for FGR V-SBD and 358 V for MGR V-SBD. Degradation of electrical characteristics of the MGR V-SBD can be attributed to the increased reverse leakage current caused by the guard ring structure, and it is expected that the electrical performance can be improved by preventing premature leakage current when an appropriate reverse voltage is applied to the guard ring area. On the other hand, FGR V-SBD shows overall better electrical properties than MGR V-SBD because Al2O3 was widely deposited on the Ga2O3 surface, which prevent leakage current on the Ga2O3 surface.

Magnetism in Ni-W textured substrates for coated conductors

  • Song K. J.;Park Y. M.;Yang J. S.;Kim S. W.;Ko R. K.;Kim H. S.;Ha H. S;Oh S. S.;Park C.;Joo J. H.;Kim C. J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.7-10
    • /
    • 2005
  • The magnetic properties of a series of both annealed (biaxially textured) and as-rolled (non-textured) Ni-xW alloy tapes with compositions x = 0,1,3, and 5 at.$\%$, were studied. Characterization methods included XRD analyses to investigate the biaxial cube texturing of the annealed Ni-W alloy tapes and studies of the magnetization M for both annealed and as-rolled Ni-W alloy tapes. Both the isothermal mass magnetizations M(H) of a series of samples at different fixed temperatures and M(T) in fixed field, employing a PPMS-9 (Quantum Design), were measured. The Ni-W alloys have shown much reduced ferromagnetism as W-content x increases. Both the saturation magnetization Msat and Curie temperature Tc decrease linearly with W-content x, and both Msat and Tc go to zero at critical concentration of Xc - 9.50 at. $\%$ W.

Electroluminescence Properties of Simple Anthracene Derivatives Containing Phenyl or Naphthyl Group at 9,10-position for the Blue OLED

  • Kim, Si Hyun;Lee, Song Eun;Kim, Yong Kwan;Lee, Seung Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.562-567
    • /
    • 2017
  • The organic light-emitting diodes are fabricated with six anthracene derivatives containing simple substituents such as phenyl or naphthyl group. The device structure is as in the following: Indium tin oxide (ITO) (180 nm)/4,4-4,4',4"-tris[N-(1-naphthyl)-N-phenylamino]triphenylamine (2-TNATA) (30 nm)/4,4'-bis[N-(1-naphthyl)-N-phenyl-1-amino] biphenyl (NPB) (20 nm)/Emitting compound (30 nm)/2,2',2"-(1,3,5-Benzinetriyl)-tris (1-phenyl-1-H-benz-imidazole) TPBi (40 nm)/lithium quinolate (Liq) (2 nm)/Al (100 nm). In the emitting layer the anthracene derivatives are used without any dopant. All the six devices show blue emissions. Among the tested diodes, the one with 9-(2-naphthyl)-10-(p-tolyl) anthracene (2-NTA) exhibited luminous efficiency, power and external quantum efficiencies of 3.26 cd/A, 0.98 lm/A, 2.8 % at $20mA/cm^2$.

Calculation of Electronic State of MnO2 Oxide Electode Having Ni Additive (Ni이 첨가된 $MnO_2$ 산화물전극의 전자상태 계산)

  • Lee, Dong-Yoon;Kim, Bong-Seo;Song, Jae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1515-1517
    • /
    • 2002
  • $MnO_2$ is used for the oxide electrode of electrochemical equipments because of its good electric conductivity and low oxygen overpotential. The effect of additives on the properties of $MnO_2$ has been investigated to enhance the electric conductivity and the stability in an acid solution. In this research, the effect of Ni addition on ${\beta}-MnO_2$ was studied by the theoretical quantum chemical method. The calculation was carried out by the discrete variation $X{\alpha}$ method, which is a sort of the first principle method and use Hatre-Fock-Slater approximation. The electron energy level, the density of state, the bond overlap population, the charge density distribution and the net ionic transfer between cations and anions were calculated and discussed. The used cluster model was $(Mn_{10}NiO_{44})^{-44}$.

  • PDF

Partial Principal Component Elimination Method and Extended Temporal Decorrelation Method for the Exclusion of Spontaneous Neuromagnetic Fields in the Multichannel SQUID Magnetoencephalography

  • Kim, Kiwoon;Lee, Yong-Ho;Hyukchan Kwon;Kim, Jin-Mok;Kang, Chan-Seok;Kim, In-Seon;Park, Yong-Ki
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.114-120
    • /
    • 2003
  • We employed a method eliminating a temporally partial principal component (PC) of multichannel-recorded neuromagnetic fields for excluding spatially correlated noises from event-evoked signals. The noises in magnetoencephalography (MEG) are considered to be mainly spontaneous neuromagnetic fields which are spatially correlated. In conventional MEG experiments, the amplitude of the spontaneous neuromagnetic field is much lager than that of the evoked signal and the synchronized characteristics of the correlated rhythmic noise makes it possible for us to extract the correlation noises from the evoked signal by means of the general PC analysis. However, the whole-time PC of the fields still contains a little projection component of the evoked signal and the elimination of the PC results in the distortion of the evoked signal. Especially, the distortion will not be negligible when the amplitude of the evoked signal is relatively large or when the evoked signals have a spatially-asymmetrical distribution which does not cancel out the corresponding elements of the covariance matrix. In the period of prestimulus, there are only the spontaneous fields and we can find the pure noise PC that is not including the evoked signal. Besides that, we propose a method, called the extended temporal decorrelation method (ETDM), to suppress the distortion of the noise PC from remanent evoked signal components. In this study, we applied the Partial Principal component elimination method (PPCE) and ETDM to simulated signals and the auditory evoked signals that had been obtained with our homemade 37-channel magnetometer-based SQUID system. We demonstrate here that PPCE and ETDM reduce the number of epochs required in averaging to about half of that required in conventional averaging.

  • PDF

Programmatic Sequence for the Automatic Adjustment of Double Relaxation Oscillation SQUID Sensors

  • Kim, Kiwoong;Lee, Yong-Ho;Hyukchan Kwon;Kim, Jin-Mok;Kang, Chan-Seok;Kim, In-Seon;Park, Yong-Ki
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.42-47
    • /
    • 2002
  • Measuring magnetic fields with a SQUID sensor always requires preliminary adjustments such as optimum bas current determination and flux-locking point search. A conventional magnetoencephalography (MEG) system consists of several dozens of sensors and we should condition each sensor one by one for an experiment. This timeconsuming job is not only cumbersome but also impractical for the common use in hospital. We had developed a serial port communication protocol between SQUID sensor controllers and a personal computer in order to control the sensors. However, theserial-bus-based control is too slow for adjusting all the sensors with a sufficient accuracy in a reasonable time. In this work, we introduce programmatic control sequence that saves the number of the control pulse arrays. The sequence separates into two stages. The first stage is a function for searching flux-locking points of the sensors and the other stage is for determining the optimum bias current that operates a sensor in a minimum noise level Generally, the optimum bias current for a SQUID sensor depends on the manufactured structure, so that it will not easily change about. Therefore, we can reduce the time for the optimum bias current determination by using the saved values that have been measured once by the second stage sequence. Applying the first stage sequence to a practical use, it has taken about 2-3 minutes to perform the flux-locking for our 37-channel SQUID magnetometer system.

  • PDF

A Study on the Geometric Design Parameters for Optimization of Cooling Device in the Magnetocardiogram System (심자도 장비의 냉각장치 특성 최적화를 위한 기하 설계 변수 연구)

  • Lee, Jung-Hee;Lee, Young-Shin;Lee, Yong-Ho;Lim, Hyun-Kyoon;Lee, Sung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • A magnetocardiogram (MCG) is a recording of the biomagnetic signals generated by cardiac electrical activity. Biomagnetic instruments are based on superconducting quantum interference devices (SQUIDs). A liquid cryogenic Dewar flask was used to maintain the superconductors in a superconducting state at a very low temperature (4 K). In this study, the temperature distribution characteristics of the liquid helium in the Dewar flask was investigated. The Dewar flask used in this study has a 30 L liquid helium capacity with a hold time of 5 d. The Dewar flask has two thermal shields rated at 150 and 40 K. The temperatures measured at the end of the thermal shield and calculated from the computer model were compared. This study attempted to minimize the heat transfer rate of the cryogenic Dewar flask using an optimization method about the geometric variable to find the characteristics for the design geometric variables in terms of the stress distribution of the Dewar flask. For thermal and optimization analysis of the structure, the finite element method code ANSYS 10 was used. The computer model used for the cryogenic Dewar flask was useful to predict the temperature distribution for the area less affected by the thermal radiation.