• Title/Summary/Keyword: quantum group

Search Result 178, Processing Time 0.023 seconds

Photocurrent of CdSe nanocrystals on singlewalled carbon nanotube-field effect transistor

  • Jeong, Seung-Yol;Lim, Seung-Chu;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.40-40
    • /
    • 2010
  • CdSe nanocrystals (NCs) have been decorated on singlewalled carbon nanotubes (SWCNTs) by combining a method of chemically modified substrate along with gate-bias control. CdSe/ZnS core/shell quantum dots were negatively charged by adding mercaptoacetic acid (MAA). The silicon oxide substrate was decorated by octadecyltrichlorosilane (OTS) and converted to hydrophobic surface. The negatively charged CdSe NCs were adsorbed on the SWCNT surface by applying the negative gate bias. The selective adsorption of CdSe quantum dots on SWCNTs was confirmed by confocal laser scanning microscope. The measured photocurrent clearly demonstrates that CdSe NCs decorated SWCNT can be used for photodetector and solar cell that are operable over a wide range of wavelengths.

  • PDF

Self-Assembled InAs Quantum Dots on InP(001) for Long-Wavelength Laser Applications

  • Kim, Jin-Soo;Lee, Jin-Hong;Hong, Sung-Ui;Kwack, Ho-Sang;Lee, Chul-Wook;Oh, Dae-Kon
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.475-480
    • /
    • 2004
  • Self-assembled InAs quantum dots (QDs) embedded in an InAlGaAs matrix were grown on an InP (001) using a solid-source molecular beam epitaxy and investigated using transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. TEM images indicated that the QD formation was strongly dependent on the growth behaviors of group III elements during the deposition of InAlGaAs barriers. We achieved a lasing operation of around 1.5 ${\mu}m$ at room temperature from uncoated QD lasers based on the InAlGaAs-InAlAs material system on the InP (001). The lasing wavelengths of the ridge-waveguide QD lasers were also dependent upon the cavity lengths due mainly to the gain required for the lasing operation.

  • PDF

Quantum Chemical Analysis of Structure-Activity Relationships in Salicylic Acids as Anti-inflammatory Drugs (소염제로서의 살리씰산유도체의 구조-활성 상관관계에 관한 양자화학적 해석)

  • Rhee, Jong-Dal;Koo, Bon-Ki
    • YAKHAK HOEJI
    • /
    • v.33 no.2
    • /
    • pp.87-100
    • /
    • 1989
  • Salicylic acids as anti-inflammatory agents were analyzed by ab initio, quantum chemical methods to study the possible modes of binding to the receptor. As the result of multiple regression analysis of reactivity indices and interpretation of normalized frontier orbital charges of drugs, potency seems to be related to energy of HOMO and LUMO at the 5 position of benzene ring, and in the 5-phenyl substituted case, the para position of substituting ring is important. The binding occurs first at the positive site of its receptor. The charge density exhibited by the frontier orbitals suggests that charge moves from receptor site to carboxyl group. The electrostatic orientation effect makes an important contribution to the binding of the active molecules to their receptors. Also the electrostatic potential model may be able to rationalize the source of activity or inactivity of the drugs under investigation.

  • PDF

Adsorption and separation behaviors of Y(III) and Sr(II) in acid solution by a porous silica based adsorbent

  • Wu, Hao;Kawamura, Taiga;Kim, Seong-Yun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3352-3358
    • /
    • 2021
  • Aiming at selective adsorption and separation of Y(III) from the Y(III)-Sr(II) group in acid solution, a silica-based TODGA impregnated adsorbent [(TODGA+1-dodecanol)/SiO2-P-F600] has been prepared. Batch adsorption experiments were conducted under the effect of contact time, acid concentration, solution temperature, and adsorption capacity etc. Chromatography recovery of more than 90% Y(III) was successfully achieved under elution with 0.01 M DTPA solution in nitric acid adsorption system, and 0.1 M HCl solution in hydrochloride adsorption system, respectively.

Hydrosilylation of Photoluminescent Porous Silicon with Aromatic Molecules; Stabilization of Photoluminescence and Anti-photobleaching Properties of Surface-Passivated Luminescent Porous Silicon

  • Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.147-154
    • /
    • 2021
  • A luminescent porous silicon sensor, whose surface was passivated with organic molecule via hydrosilylation under various conditions, has been researched to measure the photoluminescence (PL) stability of porous silicon (PSi). Photoluminescent PSi were synthesized by an electrochemical etching of n-type silicon wafer under the illumination with a 300 W tungsten filament bulb during the etching process. The PL of PSi displayed at 650 nm, which is due to the quantum confinement of silicon quantum dots in the PSi. To stabilized the photoluminescence of PSi, the hydrosilylation of PSi with silole molecule containg vinyl group was performed. Surface morphologies of fresh PSi and surface-modified PSi were obtained with a cold FE-SEM. Optical characterization of red photoluminescent silicon quantum dots was investigated by UV-vis and fluorescence spectrometer.

Development and validation of multiphysics PWR core simulator KANT

  • Taesuk Oh;Yunseok Jeong;Husam Khalefih;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2230-2245
    • /
    • 2023
  • KANT (KAIST Advanced Nuclear Tachygraphy) is a PWR core simulator recently developed at Korea Advance Institute of Science and Technology, which solves three-dimensional steady-state and transient multigroup neutron diffusion equations under Cartesian geometries alongside the incorporation of thermal-hydraulics feedback effect for multi-physics calculation. It utilizes the standard Nodal Expansion Method (NEM) accelerated with various Coarse Mesh Finite Difference (CMFD) methods for neutronics calculation. For thermal-hydraulics (TH) calculation, a single-phase flow model and a one-dimensional cylindrical fuel rod heat conduction model are employed. The time-dependent neutronics and TH calculations are numerically solved through an implicit Euler scheme, where a detailed coupling strategy is presented in this paper alongside a description of nodal equivalence, macroscopic depletion, and pin power reconstruction. For validation of the steady, transient, and depletion calculation with pin power reconstruction capacity of KANT, solutions for various benchmark problems are presented. The IAEA 3-D PWR and 4-group KOEBERG problems were considered for the steady-state reactor benchmark problem. For transient calculations, LMW (Lagenbuch, Maurer and Werner) LWR and NEACRP 3-D PWR benchmarks were solved, where the latter problem includes thermal-hydraulics feedback. For macroscopic depletion with pin power reconstruction, a small PWR problem modified with KAIST benchmark model was solved. For validation of the multi-physics analysis capability of KANT concerning large-sized PWRs, the BEAVRS Cycle1 benchmark has been considered. It was found that KANT solutions are accurate and consistent compared to other published works.

Multi-junction thermocouple for temperature gradient measurements (온도구배 측정용 다중접점 열전대)

  • Kim, Yong-Gyoo;Gam, Kee-Sool
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.3-6
    • /
    • 1995
  • Type K thermocouples having multi-junction for measuring the temperature gradient of the furnace were fabricated. The obtained results on the temperature gradient of the electric furnace maintained at $800^{\circ}C$ were consistent with those for the reference grade type S thermocouple, which was carefully calibrated, within the permitted error limit of the type K thermocouple. It was suggested that noble metal multi-junction thermocouples be suitable for more accurate temperature gradient measurements.

  • PDF

Solution of Klein Gordon Equation for Some Diatomic Molecules with New Generalized Morse-like Potential Using SUSYQM

  • Isonguyo, Cecilia N.;Okon, Ituen B.;Ikot, Akpan N.;Hassanabadi, Hassan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3443-3446
    • /
    • 2014
  • We present the solution of Klein Gordon equation with new generalized Morse-like potential using SUSYQM formalism. We obtained approximately the energy eigenvalues and the corresponding wave function in a closed form for any arbitrary l state. We computed the numerical results for some selected diatomic molecules.